Learn R Programming

spatstat.linnet (version 3.4-0)

linearpcfEuclidInhom: Inhomogeneous Linear Pair Correlation Function Based on Euclidean Distances

Description

Computes an estimate of the inhomogeneous pair correlation function based on Euclidean distances, for a point pattern on a linear network.

Usage

linearpcfEuclidInhom(X, lambda = NULL, r = NULL, ...,
      normalise = TRUE, normpower = 2,
      update = TRUE, leaveoneout = TRUE,
      sigma=NULL, adjust.sigma=1, bw="nrd0", adjust.bw=1)

Arguments

Value

Function value table (object of class "fv").

Details

This command computes the inhomogeneous version of the pair correlation function based on Euclidean distances, for a point pattern on a linear network.

This is different from the inhomogeneous pair correlation function based on shortest-path distances, which is computed by linearpcfinhom.

The inhomogeneous pair correlation function based on Euclidean distances is defined in equation (30) of Rakshit, Nair and Baddeley (2017). Estimation is performed as described in equation (34) of Rakshit, Nair and Baddeley (2017).

The argument lambda should provide estimated values of the intensity of the point process at each point of X.

If lambda=NULL, the intensity will be estimated by kernel smoothing by calling density.lpp with the smoothing bandwidth sigma, and with any other relevant arguments that might be present in .... A leave-one-out kernel estimate will be computed if leaveoneout=TRUE.

If lambda is given, then it may be a numeric vector (of length equal to the number of points in X), or a function(x,y) that will be evaluated at the points of X to yield numeric values, or a pixel image (object of class "im") or a fitted point process model (object of class "ppm" or "lppm").

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE. The intensity at data points will be computed by fitted.lppm or fitted.ppm. A leave-one-out estimate will be computed if leaveoneout=TRUE and update=TRUE.

If normalise=TRUE (the default), then the estimate is multiplied by \(c^{\mbox{normpower}}\) where \( c = \mbox{length}(L)/\sum (1/\lambda(x_i)). \) This rescaling reduces the variability and bias of the estimate in small samples and in cases of very strong inhomogeneity. The default value of normpower is 1 (for consistency with previous versions of spatstat) but the most sensible value is 2, which would correspond to rescaling the lambda values so that \( \sum (1/\lambda(x_i)) = \mbox{area}(W). \)

References

Rakshit. S., Nair, G. and Baddeley, A. (2017) Second-order analysis of point patterns on a network using any distance metric. Spatial Statistics 22 (1) 129--154.

See Also

linearKEuclidInhom, linearpcfEuclid.

See linearpcfinhom for the corresponding function based on shortest-path distances.

Examples

Run this code
  X <- rpoislpp(5, simplenet)
  fit <- lppm(X ~x)
  g <- linearpcfEuclidInhom(X, lambda=fit)
  plot(g)

Run the code above in your browser using DataLab