Learn R Programming

spatstat.local (version 5.1-0)

Smooth.locmincon: Smooth a Locally Fitted Cluster or Cox Point Process Model

Description

Applies kernel smoothing to the fitted cluster parameters of a locally-fitted cluster or Cox point process model.

Usage

# S3 method for locmincon
Smooth(X, tau = NULL, ...)

Value

A pixel image or a list of pixel images.

Arguments

X

Object of class "locmincon".

tau

Smoothing bandwidth.

...

Additional arguments passed to Smooth.ppp controlling the smoothing and the pixel resolution.

Author

Adrian Baddeley Adrian.Baddeley@curtin.edu.au.

Details

An object of class "locmincon" represents a locally-fitted Cox or cluster point process model. It provides estimates of the cluster parameters at each of the data points of the original point pattern dataset.

The parameter estimates will be smoothed using a Gaussian kernel with standard deviation tau.

References

Baddeley, A. (2017) Local composite likelihood

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC Press.

See Also

locmincon, Smooth.ppp

Examples

Run this code
   fit <- locmincon(redwood)
   Smooth(fit, tau=0.1)

Run the code above in your browser using DataLab