Computes the influence measure for a fitted spatial point process model.
# S3 method for ppm
influence(model, ...,
drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)
An object of class "influence.ppm"
.
Fitted point process model (object of class "ppm"
).
Ignored.
Logical. Whether to include (drop=FALSE
) or
exclude (drop=TRUE
) contributions from quadrature
points that were not used to fit the model.
Components of the score vector and Hessian matrix for the irregular parameters, if required. See Details.
List of extra arguments for the functions iScore
,
iHessian
if required.
Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner rolfturner@posteo.net and Ege Rubak rubak@math.aau.dk.
Given a fitted spatial point process model model
,
this function computes the influence measure
described in Baddeley, Chang and Song (2013)
and Baddeley, Rubak and Turner (2019).
The function influence
is generic,
and influence.ppm
is the method for objects of class
"ppm"
representing point process models.
The influence of a point process model is a value attached to each data point
(i.e. each point of the point pattern to which the model
was fitted).
The influence value
If the point process model trend has irregular parameters that were
fitted (using ippm
)
then the influence calculation requires the first and second
derivatives of the log trend with respect to the irregular parameters.
The argument iScore
should be a list,
with one entry for each irregular parameter, of R functions that compute the
partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular
parameter. The argument iHessian
should be a list,
with
The result of influence.ppm
is
an object of class "influence.ppm"
. It can be printed and plotted.
It can be converted to a marked
point pattern by as.ppp
(see as.ppp.influence.ppm
).
There are also methods for [
,
as.owin
, domain
,
shift
, integral
and Smooth
.
Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point process models. Scandinavian Journal of Statistics 40, 86--104.
Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial point processes. Spatial Statistics 29, 15--48.
leverage.ppm
,
dfbetas.ppm
,
ppmInfluence
,
plot.influence.ppm
X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
plot(influence(fit))
Run the code above in your browser using DataLab