# matclust.estK

0th

Percentile

##### Fit the Matern Cluster Point Process by Minimum Contrast

Fits the Matern Cluster point process to a point pattern dataset by the Method of Minimum Contrast.

Keywords
models, spatial
##### Usage
matclust.estK(X, startpar=c(kappa=1,R=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL)
##### Arguments
X
Data to which the Matern Cluster model will be fitted. Either a point pattern or a summary statistic. See Details.
startpar
Vector of starting values for the parameters of the Matern Cluster process.
lambda
Optional. An estimate of the intensity of the point process.
q,p
Optional. Exponents for the contrast criterion.
rmin, rmax
Optional. The interval of $r$ values for the contrast criterion.
##### Details

This algorithm fits the Matern Cluster point process model to a point pattern dataset by the Method of Minimum Contrast, using the $K$ function.

The argument X can be either [object Object],[object Object]

The algorithm fits the Matern Cluster point process to X, by finding the parameters of the Matern Cluster model which give the closest match between the theoretical $K$ function of the Matern Cluster process and the observed $K$ function. For a more detailed explanation of the Method of Minimum Contrast, see mincontrast. The Matern Cluster point process is described in Moller and Waagepetersen (2003, p. 62). It is a cluster process formed by taking a pattern of parent points, generated according to a Poisson process with intensity $\kappa$, and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean $\mu$, and the locations of the offspring points of one parent are independent and uniformly distributed inside a circle of radius $R$ centred on the parent point.

The theoretical $K$-function of the Matern Cluster process is $$K(r) = \pi r^2 + \frac 1 \kappa h(\frac{r}{2R})$$ where $$h(z) = 2 + \frac 1 \pi [ ( 8 z^2 - 4 ) \mbox{arccos}(z) - 2 \mbox{arcsin}(z) + 4 z \sqrt{(1 - z^2)^3} - 6 z \sqrt{1 - z^2} ]$$ for $z <= 1$,="" and="" $h(z)="1$" for="" $z=""> 1$. The theoretical intensity of the Matern Cluster process is $\lambda = \kappa \mu$.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters $\kappa$ and $R$. Then the remaining parameter $\mu$ is inferred from the estimated intensity $\lambda$.

If the argument lambda is provided, then this is used as the value of $\lambda$. Otherwise, if X is a point pattern, then $\lambda$ will be estimated from X. If X is a summary statistic and lambda is missing, then the intensity $\lambda$ cannot be estimated, and the parameter $\mu$ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Matern Cluster process can be simulated, using rMatClust.

##### Value

• An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:
• parVector of fitted parameter values.
• fitFunction value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.

##### References

Moller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2006). An estimation function approach to inference for inhomogeneous Neyman-Scott processes. Submitted.

lgcp.estK, thomas.estK, mincontrast, Kest, rMatClust to simulate the fitted model.

##### Aliases
• matclust.estK
##### Examples
data(redwood)
u <- matclust.estK(redwood, c(kappa=10, R=0.1))
u
plot(u)
Documentation reproduced from package spatstat, version 1.12-5, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.