dknn(x, k = 1, d = 2, lambda = 1)
pknn(q, k = 1, d = 2, lambda = 1)
qknn(p, k = 1, d = 2, lambda = 1)
rknn(n, k = 1, d = 2, lambda = 1)
dknn
returns the probability density,
pknn
returns cumulative probabilities (distribution function),
qknn
returns quantiles,
and rknn
generates random deviates.Then $R^d$ has a Gamma distribution with shape parameter $k$ and rate $\lambda * \alpha$ where $\alpha$ is a constant (equal to the volume of the unit ball in $d$-dimensional space). See e.g. Cressie (1991, page 61).
These functions support calculation and simulation for the distribution of $R$.
x <- seq(0, 5, length=20)
densities <- dknn(x, k=3, d=2)
cdfvalues <- pknn(x, k=3, d=2)
randomvalues <- rknn(100, k=3, d=2)
deciles <- qknn((1:9)/10, k=3, d=2)
Run the code above in your browser using DataLab