rStrauss(beta, gamma = 1, R = 0, W = owin())
"owin"
) in which to
generate the random pattern. Currently this must be a rectangular
window."ppp"
).W
using a The Strauss process (Strauss, 1975; Kelly and Ripley, 1976)
is a model for spatial inhibition, ranging from
a strong `hard core' inhibition to a completely random pattern
according to the value of gamma
.
The Strauss process with interaction radius $R$ and
parameters $\beta$ and $\gamma$
is the pairwise interaction point process
with probability density
The interaction parameter $\gamma$ must be less than or equal to $1$ in order that the process be well-defined (Kelly and Ripley, 1976). This model describes an ``ordered'' or ``inhibitive'' pattern. If $\gamma=1$ it reduces to a Poisson process (complete spatial randomness) with intensity $\beta$. If $\gamma=0$ it is called a ``hard core process'' with hard core radius $R/2$, since no pair of points is permitted to lie closer than $R$ units apart.
The simulation algorithm used to generate the point pattern
is rmh
, whose output
is only approximately correct).
The implementation is currently experimental. There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.
Berthelsen, K.K. and Moller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.
Kelly, F.P. and Ripley, B.D. (1976) On Strauss's model for clustering. Biometrika 63, 357--360.
Moller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.
Strauss, D.J. (1975) A model for clustering. Biometrika 63, 467--475.
rmh
X <- rStrauss(0.05,0.2,1.5,square(141.4))
Z <- rStrauss(100,0.7,0.05)
Run the code above in your browser using DataLab