spatstat-internal
From spatstat v1.25-1
by Adrian Baddeley
Internal spatstat functions
Internal spatstat functions.
- Keywords
- internal
Usage
## S3 method for class 'hyperframe':
[(x, i, j, drop=FALSE, ...)
## S3 method for class 'hyperframe':
[(x, i, j) <- value
## S3 method for class 'hyperframe':
$(x, name)
## S3 method for class 'hyperframe':
$(x, i) <- value
acedist.show(X, Y, n, d, timelag = 0)
acedist.noshow(X, Y, n, d)
adjustthinrange(ur,vstep,vr)
affinexy(X, mat = diag(c(1, 1)), vec = c(0, 0), invert=FALSE)
affinexypolygon(p, mat, vec, detmat)
anycrossing.psp(A,B)
apply23sum(x)
area.xypolygon(polly)
areaGain.diri(u, X, r, ..., W=as.owin(X))
areaGain.grid(u, X, r, ..., W=NULL, ngrid=spatstat.options("ngrid.disc"))
areaLoss.diri(X, r, ..., W=as.owin(X), subset=NULL)
areaLoss.grid(X, r, ..., W=as.owin(X), subset=NULL, ngrid=spatstat.options("ngrid.disc"))
AsymmDistance.psp(X, Y, metric="Hausdorff", method="Fortran")
as.breakpts(...)
## S3 method for class 'fv':
as.data.frame(x, ...)
as.fv(x)
## S3 method for class 'hyperframe':
as.list(x, ...)
## S3 method for class 'scan.test':
as.im(X, \dots)
## S3 method for class 'linim':
as.im(X, \dots)
as.listof(x)
as.units(s)
badprobability(x, NAvalue)
beachcolours(heightrange, sealevel, monochrome, ncolours)
bermantestEngine(model, covariate, which, alternative, ..., modelname, covname, dataname)
bdrylength.xypolygon(polly)
bdry.mask(W)
blankcoefnames(x)
breakpts(val, maxi, even = FALSE, npos = NULL, step = NULL)
breakpts.from.r(r)
bt.frame(Q, trend=~1, interaction=NULL, ..., covariates=NULL,
correction="border", rbord=0, use.gam=FALSE, allcovar=FALSE)
bw.optim(cv, h, iopt, ..., xlab, ylab)
cartesian(pp, markset, fac = TRUE)
cat.factor(..., recursive=FALSE)
cellmiddles(W, nx, ny, npix, gi)
censtimeCDFest(o, cc, d, breaks, ..., KM, RS, HAN, RAW, han.denom, pmax)
checkfields(X,L)
check.finite(x, context, xname)
check.hist.lengths(hist,breaks)
check.named.list(x, nam, context, namopt)
check.named.vector(x, nam, context, namopt)
check.named.thing(x, nam, namopt, xtitle, valid, type, context, fatal)
check.nvector(v, npoints, fatal=TRUE, things="data points", naok=FALSE)
check.nmatrix(m, npoints, fatal=TRUE, things="data points", naok=FALSE, squarematrix=TRUE)
check.1.real(x, context, fatal)
check.testfun(f, f1, X)
clarkevansCalc(X, correction, clipregion, working)
clip.psp(x, window, check=TRUE)
cliprect.psp(x, window)
clippoly.psp(s, window)
closepairs(X,rmax,ordered)
## S3 method for class 'summary.ppm':
coef(object, \dots)
## S3 method for class 'rat':
compatible(A, B, \dots)
complaining(whinge, fatal, value)
compileK(D, r, weights, denom, check)
compilepcf(D, r, weights, denom, check, endcorrect, ...)
crosspairs(X,Y,rmax)
crosspaircounts(X,Y,r)
crossfikselterms(X,Y,r,kappa)
cobble.xy(x, y, f, fatal)
codetime(x)
commasep(x)
conform.imagelist(X, Zlist)
countingweights(id, areas, check = TRUE)
damaged.ppm(object)
default.clipwindow(object, epsilon)
default.n.tiling(X, nd, ntile, npix, verbose)
default.ntile(X)
densitypointsEngine(x, sigma, ...,
weights, edge, varcov,
leaveoneout, diggle, sorted)
diagnose.ppm.engine(object, ..., type="eem", typename, opt,
sigma=NULL, rbord = reach(object), compute.sd=TRUE,
compute.cts=TRUE, rv=NULL, oldstyle=FALSE)
dgsTerms(X, Y, idX, idY, rho)
diggraterms(X, Y, idX, idY, delta, rho)
digital.volume(range, nval, vside)
dilate.owin(...)
## S3 method for class 'fasp':
dim(x)
## S3 method for class 'hyperframe':
dim(x)
## S3 method for class 'im':
dim(x)
## S3 method for class 'msr':
dim(x)
## S3 method for class 'fasp':
dimnames(x)
## S3 method for class 'fasp':
dimnames(x) <- value
## S3 method for class 'msr':
dimnames(x)
distpl(p, l)
distppl(p, l)
distppll(p, l, mintype, method, listit)
distppllmin(p, l, big)
distributecbind(x)
dist2dpath(dist, method="C")
divisors(n)
do.as.im(x, action, ..., W, eps, dimyx, xy, na.replace)
do.call.matched(fun, arglist, funargs, extrargs)
do.iplot(panel)
do.istat(panel)
edge.Ripley(X, r, W, method)
edge.Trans(X, Y, W, exact, paired, trim)
edge.Trans.modif(X, Y, WX, WY, exact, paired, trim)
emptywindow(w)
ensure2vector(x)
envelopeEngine(X, fun, simul,
nsim=99, nrank=1, ...,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL,
savefuns=FALSE, savepatterns=FALSE, nsim2=nsim,
VARIANCE=FALSE, nSD=2,
Yname=NULL, maxnerr=nsim, internal=NULL, cl=NULL,
envir.user=envir.user)
## S3 method for class 'matrix':
envelope(Y, ..., rvals, observed, theory, funX,
nsim, nsim2, jsim, jsim.mean,
type, csr, use.theory, nrank, ginterval, nSD,
check, Yname)
equalpairs(U, X, marked=FALSE)
equalpairs.quad(Q)
equals.quad(Q)
equalsfun.quad(Q)
eratosthenes(nmax)
erodemask(w,r,strict)
erode.owin(...)
evalCovar(model, covariate, ...,
dimyx, eps, jitter, modelname, covname, dataname)
evalCovariate(covariate, locations)
evalInteraction(X,P,E,interaction,correction,...,precomputed,savecomputed)
evalInterEngine(X,P,E,interaction,correction,...,precomputed,savecomputed)
even.breaks.owin(w)
evenly.spaced(x, tol)
exactdt(X, ...)
exactPdt(w)
explain.ifnot(expr, context)
## S3 method for class 'slrm':
extractAIC(fit, scale = 0, k = 2, ...)
f3engine(x, y, z, box, vside, range, nval, correction)
f3Cengine(x, y, z, box, vside, rmax, nrval)
fasp(fns, which, formulae, dataname, title, rowNames, colNames)
findCovariate(covname, scope, scopename=NULL)
findcbind(root, depth, maxdepth)
findmarktype(x)
firstfactor(x)
fii(interaction, coefs, Vnames, IsOffset)
fikselterms(U,X,r,kappa,EqualPairs)
fillNA(x, value)
flipxypolygon(p)
forbidNA(x, context, xname)
FormatFaspFormulae(f, argname)
## S3 method for class 'slrm':
formula(x, ...)
fvlabels(x, expand=FALSE)
fvlabels(x) <- value
fvlabelmap(x, dot=TRUE)
fvlegend(object, elang)
fvnames(X, a)
fvnames(X, a) <- value
g3engine(x, y, z, box, rmax, nrval, correction)
g3Cengine(x, y, z, box, rmax, nrval)
gpcmethod(fname, signature)
greatest.common.divisor(n,m)
getdataname(defaultvalue, ..., dataname)
getfields(X, L, fatal = TRUE)
getglmdata(object, drop=FALSE)
getglmfit(object)
getglmsubset(object)
geyercounts(U,X,r,sat,Xcounts,EqualPairs)
GLMpredict(fit, data, coefs, changecoef)
good.names(nama, defaults, suffices)
gridindex(x, y, xrange, yrange, nx, ny)
grid1index(x, xrange, nx)
grow.rectangle(W, xmargin=0, ymargin=xmargin)
handle.r.b.args(r = NULL, breaks = NULL, window, eps = NULL, rmaxdefault)
handle.rshift.args(W, ..., radius, width, height, edge, clip, edgedefault)
ho.engine(model, ..., nsim, nrmh, start, control, verb)
hsvNA(h, s, v, ...)
identical.formulae(x,y)
idorempty(w, r, caller)
implemented.for.K(correction, windowtype, explicit)
inpoint(W)
inside.triangle(x, y, xx, yy)
inside.xypolygon(pts, polly, test01, method)
intersect.ranges(a,b,fatal)
intX.owin(w)
intX.xypolygon(polly)
intY.owin(w)
intY.xypolygon(polly)
is.cadlag(s)
is.data(Q)
is.fv(x)
is.hole.xypolygon(polly)
is.hyperframe(x)
is.infline(x)
is.interact(x)
## S3 method for class 'default':
is.marked(\dots)
## S3 method for class 'psp':
is.marked(X, \dots)
## S3 method for class 'quad':
is.marked(X, na.action="warn", \dots)
is.mask(w)
## S3 method for class 'default':
is.multitype(\dots)
## S3 method for class 'quad':
is.multitype(X, na.action="warn", \dots)
is.parseable(x)
is.pp3(x)
is.ppx(x)
is.prime(n)
is.psp(x)
is.slrm(x)
is.tess(x)
k3engine(x, y, z, box, rmax, nrval, correction)
Kborder.engine(X, rmax, nr, correction, weights, ratio)
Kount(dIJ, bI, b, breaks)
Kwtsum(dIJ, bI, wIJ, b, w, breaks)
Kmulti.inhom(X, I, J, lambdaI=NULL, lambdaJ=NULL, ...,
r=NULL, breaks=NULL,
correction = c("border", "isotropic", "Ripley", "translate") ,
lambdaIJ=NULL, sigma=NULL, varcov=NULL,
Iname = "points satisfying condition I",
Jname = "points satisfying condition J")
Kpcf.kppm(model, what)
killinteraction(model)
km.rs.opt(o, cc, d, breaks, KM, RS)
least.common.multiple(n,m)
## S3 method for class 'im':
levels(x)
## S3 method for class 'im':
levels(x) <- value
licence.polygons()
license.polygons()
linequad(X, Y, ..., eps, nd)
linearKengine(X, ..., r, reweight, denom, correction, showworking)
linearpcfengine(X, ..., r, reweight, denom, correction)
listof(...)
localKengine(X, ..., wantL, lambda, correction, verbose, rvalue)
localpcfengine(X, ..., delta, rmax, nr, stoyan, lambda)
localpcfmatrix(X, i, ..., lambda, delta, rmax, nr, stoyan)
paste.expr(x)
## S3 method for class 'localpcfmatrix':
print(x, \dots)
## S3 method for class 'localpcfmatrix':
plot(x, \dots)
## S3 method for class 'localpcfmatrix':
[(x, i, ...)
lookup.im(Z, x, y, naok, strict)
majorminorversion(v)
make.even.breaks(bmax, npos, bstep)
make.parseable(x)
makeunits(sing, plur, mul)
markappend(...)
markcbind(...)
markformat(x)
## S3 method for class 'ppp':
markformat(x)
## S3 method for class 'psp':
markformat(x)
## S3 method for class 'default':
markformat(x)
mark.scale.default(marx, w, markscale=NULL, maxsize=NULL)
markspace.integral(X)
## S3 method for class 'default':
marks(x, \dots)
## S3 method for class 'quad':
marks(x, dfok=FALSE, \dots)
markappendop(x, y)
marksubset(x, index, format)
marksubsetop(x, i)
markreplicateop(x, n)
mask2df(w)
matcolall(x)
matcolany(x)
matcolsum(x)
matrixsample(mat, newdim, phase, scale, na.value)
matrowall(x)
matrowany(x)
matrowsum(x)
maxflow(costm)
meanlistfv(z)
meanX.owin(w)
meanY.owin(w)
## S3 method for class 'slrm':
model.matrix(object, ..., keepNA = TRUE)
model.se.image(fit, W, ..., what)
mpl.engine(Q, trend, interaction, ..., covariates, covfunargs, correction,
rbord, use.gam, gcontrol, famille,
forcefit, nd, allcovar, callstring, precomputed, savecomputed, preponly)
mpl.get.covariates(covariates, locations, type, covfunargs)
mpl.prepare(Q, X, P, trend, interaction, covariates,
want.trend, want.inter, correction, rbord, Pname,
callstring, ..., covfunargs, allcovar, precomputed, savecomputed,
vnamebase, vnameprefix)
MultiPair.checkmatrix(mat, n, matname, naok, zerook)
multiply.only.finite.entries(x, a)
na.handle.im(X, na.replace)
## S3 method for class 'hyperframe':
names(x)
## S3 method for class 'hyperframe':
names(x) <- value
nearest.pixel(x, y, im)
nearest.valid.pixel(x, y, im)
newstyle.coeff.handling(object)
nncleanEngine(kthNND, k, d, ..., tol, plothist, verbose, maxit)
nndcumfun(X, ..., r)
no.trend.ppm(x)
nobjects(x)
## S3 method for class 'ppp':
nobjects(x)
## S3 method for class 'ppx':
nobjects(x)
## S3 method for class 'psp':
nobjects(x)
n.quad(Q)
numalign(i, nmax, zero)
numeric.columns(M, logical, others)
nzpaste(..., sep, collapse)
offsetsinformula(x)
onecolumn(m)
ordinal(k)
outdated.interact(object)
overlap.owin(A,B)
overlap.trapezium(xa, ya, xb, yb, verb = FALSE)
overlap.xypolygon(P, Q)
oversize.quad(Q, ..., nU, nX)
owinpolycheck(W, verbose=TRUE)
owinpoly2mask(w, rasta, check=TRUE)
## S3 method for class 'listof':
pairs(\dots, plot=TRUE)
param.quad(Q)
paren(x, type)
partialModelMatrix(X,D,model,callstring,...)
pcf3engine(x, y, z, box, rmax, nrval, correction, delta)
pcfmulti.inhom(X, I, J, lambdaI = NULL, lambdaJ = NULL, ...,
r = NULL, breaks = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("translate", "Ripley"),
sigma = NULL, varcov = NULL,
Iname = "points satisfying condition I",
Jname = "points satisfying condition J")
pickoption(what="option", key, keymap, ...,
exact=FALSE, list.on.err=TRUE, die=TRUE, multi=FALSE)
ploterodewin(W1, W2, col.edge, col.inside, ...)
ploterodeimage(W, Z, ..., Wcol, rangeZ, colsZ)
## S3 method for class 'barplotdata':
plot(x, \dots)
## S3 method for class 'bw.optim':
plot(x, \dots, add)
## S3 method for class 'fii':
plot(x, \dots)
## S3 method for class 'minconfit':
plot(x, \dots)
## S3 method for class 'pppmatching':
plot(x, addmatch = NULL, main = NULL, \dots)
## S3 method for class 'plotpairsim':
plot(x, \dots)
## S3 method for class 'profilepl':
plot(x, \dots, add=FALSE, main=NULL, tag=TRUE, coeff=NULL, xvariable=NULL)
## S3 method for class 'qqppm':
plot(x, \dots, limits=TRUE, monochrome=FALSE,
limcol=if(monochrome) "black" else "red")
## S3 method for class 'quadratcount':
plot(x, \dots, add, entries, dx, dy, show.tiles)
## S3 method for class 'quadrattest':
plot(x, \dots)
## S3 method for class 'scan.test':
plot(x, \dots, do.window)
polynom(x, ...)
ppllengine(X, Y, action="project", check=FALSE)
ppmCovariates(model)
ppm.influence(fit,
what = c("leverage","influence","dfbetas","derivatives"),
..., iScore = NULL, iHessian = NULL, iArgs=list(), drop = FALSE,
method=c("C", "interpreted"))
pppdist.mat(X, Y, cutoff = 1, q = 1, matching = TRUE, precision = 9, approximation = 10)
pppdist.prohorov(X, Y, n, dfix, type, cutoff = 1, matching = TRUE, ccode = TRUE, precision = 9, approximation = 10)
prange(x)
prefixfv(x, tagprefix, descprefix, lablprefix, whichtags)
primefactors(n, prmax)
## S3 method for class 'bt.frame':
print(x, \dots)
## S3 method for class 'bw.optim':
print(x, \dots)
## S3 method for class 'colourmap':
print(x, \dots)
## S3 method for class 'diagppm':
print(x, \dots)
## S3 method for class 'envelope':
print(x, \dots)
## S3 method for class 'fasp':
print(x, \dots)
## S3 method for class 'fii':
print(x, \dots)
## S3 method for class 'fv':
print(x, \dots)
## S3 method for class 'hyperframe':
print(x, ...)
## S3 method for class 'interact':
print(x, \dots, family=TRUE, brief=FALSE)
## S3 method for class 'isf':
print(x, \dots)
## S3 method for class 'layered':
print(x, \dots)
## S3 method for class 'linim':
print(x, \dots)
## S3 method for class 'lut':
print(x, \dots)
## S3 method for class 'minconfit':
print(x, \dots)
## S3 method for class 'msr':
print(x, \dots)
## S3 method for class 'plotppm':
print(x, \dots)
## S3 method for class 'plotpairsim':
print(x, \dots)
## S3 method for class 'pppmatching':
print(x, \dots)
## S3 method for class 'profilepl':
print(x, \dots)
## S3 method for class 'quadrattest':
print(x, \dots)
## S3 method for class 'qqppm':
print(x, \dots)
## S3 method for class 'rat':
print(x, \dots)
## S3 method for class 'rmhcontrol':
print(x, \dots)
## S3 method for class 'rmhmodel':
print(x, \dots)
## S3 method for class 'rmhstart':
print(x, \dots)
## S3 method for class 'rmhInfoList':
print(x, \dots)
## S3 method for class 'slrm':
print(x, ...)
## S3 method for class 'splitppp':
print(x, \dots)
## S3 method for class 'summary.fii':
print(x, \dots)
## S3 method for class 'summary.hyperframe':
print(x, ...)
## S3 method for class 'summary.listof':
print(x, \dots)
## S3 method for class 'summary.owin':
print(x, \dots)
## S3 method for class 'summary.ppp':
print(x, \dots, dp=3)
## S3 method for class 'summary.psp':
print(x, \dots)
## S3 method for class 'summary.splitppp':
print(x, \dots)
## S3 method for class 'summary.units':
print(x, \dots)
## S3 method for class 'tess':
print(x, \dots, brief=FALSE)
prolongseq(x, newrange)
quad(data, dummy, w, param)
rectquadrat.breaks(xr, yr, nx = 5, ny = nx, xbreaks = NULL, ybreaks = NULL)
rectquadrat.countEngine(x, y, xbreaks, ybreaks, weights)
rgbNA(red, green, blue, ...)
rhs.of.formula(x)
quadrat.testEngine(X, nx, ny, ..., Xcount, xbreaks, ybreaks, tess=NULL, fit=NULL, Xname=NULL, fitname=NULL)
quadscheme.replicated(data, dummy, method = "grid", ...)
quadscheme.spatial(data, dummy, method = "grid", ...)
pointgrid(W, ngrid)
rastersample(X, Y)
rasterx.im(x)
rastery.im(x)
## S3 method for class 'fii':
reach(x, \dots, epsilon)
rebadge.fv(x, new.ylab, new.fname, tags, new.desc, new.labl, new.yexp,
new.dotnames, new.preferred, new.formula, new.tags)
rebound(x, rect)
## S3 method for class 'im':
rebound(x, rect)
## S3 method for class 'ppp':
rebound(x, rect)
## S3 method for class 'psp':
rebound(x, rect)
## S3 method for class 'owin':
rebound(x, rect)
reconcile.fv(...)
repair.old.factor.image(x)
reincarnate.interact(object)
resid4plot(RES, plot.neg="image", plot.smooth="imagecontour",
spacing=0.1, srange=NULL,monochrome=FALSE, main=NULL, ...)
resid1plot(RES, opt, plot.neg="image", plot.smooth="imagecontour",
srange=NULL, monochrome=FALSE, main=NULL, ...)
resid1panel(observedX, observedV,
theoreticalX, theoreticalV, theoreticalSD, xlab,ylab, ...)
resolve.defaults(..., .StripNull=FALSE)
resolve.2D.kernel(..., sigma, varcov, x, mindist, adjust, bwfun)
restrict.mask(M, W)
reverse.xypolygon(p, adjust=FALSE)
revcumsum(x)
rmax.rule(fun, W, lambda)
rotxy(X, angle = pi/2)
rotxypolygon(p, angle = pi/2)
rmhResolveControl(control, model)
rmhResolveExpansion(win, control, imagelist, itype)
rmhResolveTypes(model, start, control)
## S3 method for class 'rmhcontrol':
rmhcontrol(\dots)
## S3 method for class 'list':
rmhcontrol(\dots)
rmhEngine(InfoList, ..., verbose, track, kitchensink, preponly)
## S3 method for class 'rmhmodel':
rmhmodel(model, \dots)
## S3 method for class 'rmhstart':
rmhstart(start, \dots)
## S3 method for class 'list':
rmhstart(start, \dots)
rmpoint.I.allim(n, f, types)
## S3 method for class 'hyperframe':
row.names(x)
## S3 method for class 'hyperframe':
row.names(x) <- value
rpoint.multi(n, f, fmax=NULL, marks = NULL, win = unit.square(), giveup = 1000, verbose = FALSE)
runifpoispp(lambda, win = owin(c(0, 1), c(0, 1)))
runifpoisppOnLines(lambda, L)
runifrect(n, win = owin(c(0, 1), c(0, 1)))
safelookup(Z, X, factor, warn)
samefunction(f, g)
scanmeasure(X, ...)
## S3 method for class 'ppp':
scanmeasure(X, r, \dots)
## S3 method for class 'im':
scanmeasure(X, r, \dots)
scanPoisLRTS(nZ, nG, muZ, muG, alternative)
scanBinomLRTS(nZ, nG, muZ, muG, alternative)
scanLRTS(X, r, ..., method, baseline, case, alternative)
second.moment.calc(x, sigma=NULL, edge=TRUE, what="Kmeasure", debug=FALSE,
..., varcov=NULL, expand=FALSE)
second.moment.engine(x, sigma=NULL, edge=TRUE, what="Kmeasure", debug=FALSE,
..., obswin=as.owin(x), varcov=NULL, npts=NULL)
sensiblevarname(guess, fallback, maxlen)
sewpcf(d, w, denargs, lambda2area)
sewsmod(d, ff, wt, Ef, rvals, method="smrep", ..., nwtsteps=500)
shiftxy(X, vec = c(0, 0))
shiftxypolygon(p, vec = c(0, 0))
simplify.xypolygon(p, dmin)
simulrecipe(type, expr, envir, csr, pois)
singlestring(s, coll)
slr.prepare(CallInfo, envir, data, dataAtPoints, splitby)
slrAssemblePixelData(Y, Yname, W, covimages, dataAtPoints, pixelarea)
smoothpointsEngine(x, values, sigma, ...,
weights, varcov, leaveoneout, sorted)
## S3 method for class 'im':
sort(x, \dots)
spatstat.rawdata.location(...)
spatialCDFframe(model, covariate, ...)
spatialCDFtest(model, covariate, test, ..., dimyx, eps, jitter, modelname, covname, dataname)
sphere.volume(range, nval = 10)
sp.foundclass(cname, inlist, formalname, argsgiven)
sp.foundclasses(cnames, inlist, formalname, argsgiven)
stratrand(window, nx, ny, k = 1)
strausscounts(U,X,r,EqualPairs)
suffloc(object)
suffstat.generic(model, X, callstring)
suffstat.poisson(model, X, callstring)
## S3 method for class 'envelope':
summary(object,\dots)
## S3 method for class 'fii':
summary(object,\dots)
## S3 method for class 'hyperframe':
summary(object, ..., brief=FALSE)
## S3 method for class 'profilepl':
summary(object, \dots)
## S3 method for class 'pppmatching':
summary(object, \dots)
## S3 method for class 'ppx':
summary(object, \dots)
superimposeMarks(arglist, nobj)
sympoly(x, y, n)
## S3 method for class 'slrm':
terms(x, ...)
termsinformula(x)
test.crossing.psp(A,B)
test.selfcrossing.psp(A)
tilecentroids(W, nx, ny)
tilenames(x)
trianglediameters(iedge, jedge, edgelength, ..., nvert, check)
trim.mask(M, R, tolerant)
tweak.fv.entry(x, current.tag, new.labl=NULL, new.desc=NULL, new.tag=NULL)
## S3 method for class 'default':
unitname(x)
## S3 method for class 'default':
unitname(x) <- value
## S3 method for class 'interact':
update(object, \dots)
## S3 method for class 'slrm':
update(object, ..., evaluate = TRUE, env = parent.frame())
validradius(r, caller)
validate.mask(w, fatal=TRUE)
validate.quad(Q, fatal, repair, announce)
validposint(n, caller, fatal)
vanilla.fv(x)
variablesinformula(x)
## S3 method for class 'slrm':
vcov(object, ...)
verbalogic(x, op)
versionstring.interact(object)
versionstring.ppm(object)
versionstring.spatstat()
verifyclass(X, C, N = deparse(substitute(X)), fatal = TRUE)
verify.xypolygon(p, fatal=TRUE)
warn.ignored.args(..., context)
## S3 method for class 'msr':
with(data, expr, \dots)
w.quad(Q)
x.quad(Q)
y.quad(Q)
## S3 method for class 'im':
xtfrm(x)
xypolyselfint(p, eps, proper, yesorno, checkinternal)
xypolygon2psp(p, w, check)
Details
These are usually not to be called by the user.
Community examples
Looks like there are no examples yet.