# Kcross

0th

Percentile

##### Multitype K Function (Cross-type)

For a multitype point pattern, estimate the multitype $K$ function which counts the expected number of points of type $j$ within a given distance of a point of type $i$.

Keywords
spatial, nonparametric
##### Usage
Kcross(X, i, j, r=NULL, breaks=NULL, correction, ..., ratio=FALSE)
##### Arguments
X
The observed point pattern, from which an estimate of the cross type $K$ function $K_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
i
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).
j
The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks(X).
r
numeric vector. The values of the argument $r$ at which the distribution function $K_{ij}(r)$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important
breaks
An alternative to the argument r. Not normally invoked by the user. See the Details section.
correction
A character vector containing any selection of the options "border", "bord.modif", "isotropic", "Ripley", "translate", "none" or "best". It specifie
...
Ignored.
ratio
Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.
##### Details

This function Kcross and its companions Kdot and Kmulti are generalisations of the function Kest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible colours'' or types''. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point. The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The arguments i and j will be interpreted as levels of the factor X$marks. If i and j are missing, they default to the first and second level of the marks factor, respectively. The cross-type'' (type $i$ to type $j$) $K$ function of a stationary multitype point process $X$ is defined so that $\lambda_j K_{ij}(r)$ equals the expected number of additional random points of type $j$ within a distance $r$ of a typical point of type $i$ in the process $X$. Here $\lambda_j$ is the intensity of the type $j$ points, i.e. the expected number of points of type $j$ per unit area. The function $K_{ij}$ is determined by the second order moment properties of $X$.

An estimate of $K_{ij}(r)$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the process of type $i$ points were independent of the process of type $j$ points, then $K_{ij}(r)$ would equal $\pi r^2$. Deviations between the empirical $K_{ij}$ curve and the theoretical curve $\pi r^2$ may suggest dependence between the points of types $i$ and $j$.

##### References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants' nests. Applied Statistics 32, 293--303 Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several types of points. J. Royal Statist. Soc. Ser. B 44, 406--413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition. Springer Verlag, 1995.

Kdot, Kest, Kmulti, pcf

• Kcross
##### Examples
# amacrine cells data
K01 <- Kcross(amacrine, "off", "on")
plot(K01)

<testonly>K01 <- Kcross(amacrine, "off", "on", ratio=TRUE)</testonly>
K10 <- Kcross(amacrine, "on", "off")

# synthetic example: point pattern with marks 0 and 1
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
K <- Kcross(pp, "0", "1")
K <- Kcross(pp, 0, 1) # equivalent
Documentation reproduced from package spatstat, version 1.29-0, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.