markcorrint(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)
"ppp"
or something acceptable to
as.ppp
."isotropic"
, "Ripley"
or "translate"
.
It specifies the edge correction(s) to be applied.f
. If this argument is given,
then $f$ is assumed to take the form
$f(u,v)=f_1(u)f_1(v)$.normalise=FALSE
,
compute only the numerator of the expression for the
mark correlation.returnL=FALSE
or the analogue of the L-function if returnL=TRUE
.f
or f1
."fv"
(see fv.object
).
Essentially a data frame containing numeric columns"iso"
and/or "trans"
,
according to the selected edge corrections. These columns contain
estimates of the mark correlation integral $K_f(r)$
obtained by the edge corrections named (if returnL=FALSE
).X
,
this command estimates the weighted indefinite integral
markcorr
for a definition of the
mark correlation function.The use of the weighted indefinite integral was advocated by Penttinen et al (1992). The relationship between $K_f$ and $k_f$ is analogous to the relationship between the classical K-function $K(r)$ and the pair correlation function $g(r)$.
If returnL=FALSE
then the function $K_f(r)$ is returned;
otherwise the function
Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical analysis and modelling of spatial point patterns. Chichester: John Wiley.
markcorr
to estimate the mark correlation function.# CONTINUOUS-VALUED MARKS:
# (1) Spruces
# marks represent tree diameter
data(spruces)
# mark correlation function
ms <- markcorrint(spruces)
plot(ms)
# (2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(X$n)
Xc <- markcorrint(X)
plot(Xc)
# MULTITYPE DATA:
# Hughes' amacrine data
# Cells marked as 'on'/'off'
data(amacrine)
M <- markcorrint(amacrine, function(m1,m2) {m1==m2},
correction="translate")
plot(M)
Run the code above in your browser using DataLab