live <- interactive()
   op <- spatstat.options()
   spatstat.options(rmh.nrep=1e5)
   Nrep <- 1e5
   X <- swedishpines
   if(live) plot(X, main="Swedish Pines data")
   # Poisson process
   fit <- ppm(X, ~1, Poisson())
   Xsim <- rmh(fit)
   if(live) plot(Xsim, main="simulation from fitted Poisson model")
   # Strauss process   
   fit <- ppm(X, ~1, Strauss(r=7))
   Xsim <- rmh(fit)
   if(live) plot(Xsim, main="simulation from fitted Strauss model")
   # Strauss process simulated on a larger window
     # then clipped to original window
     Xsim <- rmh(fit, control=list(nrep=Nrep, expand=1.1, periodic=TRUE))
     Xsim <- rmh(fit, nrep=Nrep, expand=2, periodic=TRUE)
   X <- rSSI(0.05, 100)
     # piecewise-constant pairwise interaction function
     fit <- ppm(X, ~1, PairPiece(seq(0.02, 0.1, by=0.01)))
     Xsim <- rmh(fit)
    # marked point pattern
    Y <- amacrine
   # marked Poisson models
     fit <- ppm(Y)
     fit <- ppm(Y,~marks)
     fit <- ppm(Y,~polynom(x,2))
     fit <- ppm(Y,~marks+polynom(x,2))
     fit <- ppm(Y,~marks*polynom(x,y,2))
     Ysim <- rmh(fit)
   # multitype Strauss models
   MS <- MultiStrauss(types = levels(Y$marks),
                      radii=matrix(0.07, ncol=2, nrow=2))
   fit <- ppm(Y, ~marks, MS)
    Ysim <- rmh(fit)
   fit <- ppm(Y,~marks*polynom(x,y,2), MS)
   Ysim <- rmh(fit)
   if(live) plot(Ysim, main="simulation from fitted inhomogeneous Multitype Strauss")
   spatstat.options(op)
  # Hybrid model
    fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
    Y <- rmh(fit)Run the code above in your browser using DataLab