# affine.lpp

0th

Percentile

##### Apply Geometrical Transformations to Point Pattern on a Linear Network

Apply geometrical transformations to a point pattern on a linear network.

Keywords
spatial, math
##### Usage
## S3 method for class 'lpp':
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)  ## S3 method for class 'lpp':
shift(X, \dots)  ## S3 method for class 'lpp':
rotate(X, angle=pi/2, \dots)  ## S3 method for class 'lpp':
scalardilate(X, f, \dots)  ## S3 method for class 'lpp':
rescale(X, s)
##### Arguments
X
Point pattern on a linear network (object of class "lpp").
mat
Matrix representing a linear transformation.
vec
Vector of length 2 representing a translation.
angle
f
Scalar dilation factor.
s
Unit conversion factor: the new units are s times the old units.
...
Arguments passed to other methods.
##### Details

These functions are methods for the generic functions affine, shift, rotate, rescale and scalardilate applicable to objects of class "lpp".

All of these functions perform geometrical transformations on the object X, except for rescale, which simply rescales the units of length.

##### Value

• Another point pattern on a linear network (object of class "lpp") representing the result of applying the geometrical transformation.

lpp. Generic functions affine, shift, rotate, scalardilate, rescale.

##### Aliases
• affine.lpp
• shift.lpp
• rotate.lpp
• rescale.lpp
• scalardilate.lpp
##### Examples
X <- rpoislpp(2, simplenet)
U <- rotate(X, pi)
stretch <- diag(c(2,3))
Y <- affine(X, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(X, mat=shear, vec=c(0, 1))
Documentation reproduced from package spatstat, version 1.36-0, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.