# pcf.ppp

##### Pair Correlation Function of Point Pattern

Estimates the pair correlation function of a point pattern using kernel methods.

- Keywords
- spatial, nonparametric

##### Usage

```
## S3 method for class 'ppp':
pcf(X, \dots, r = NULL, kernel="epanechnikov", bw=NULL,
stoyan=0.15,
correction=c("translate", "Ripley"),
divisor = c("r", "d"),
domain=NULL)
```

##### Arguments

- X
- A point pattern (object of class
`"ppp"`

). - r
- Vector of values for the argument $r$ at which $g(r)$ should be evaluated. There is a sensible default.
- kernel
- Choice of smoothing kernel,
passed to
`density`

. - bw
- Bandwidth for smoothing kernel, passed to
`density`

. - ...
- Other arguments passed to the kernel density estimation
function
`density`

. - stoyan
- Bandwidth coefficient; see Details.
- correction
- Choice of edge correction.
- divisor
- Choice of divisor in the estimation formula:
either
`"r"`

(the default) or`"d"`

. See Details. - domain
- Optional. Calculations will be restricted to this subset of the window. See Details.

##### Details

The pair correlation function $g(r)$ is a summary of the dependence between points in a spatial point process. The best intuitive interpretation is the following: the probability $p(r)$ of finding two points at locations $x$ and $y$ separated by a distance $r$ is equal to $$p(r) = \lambda^2 g(r) \,{\rm d}x \, {\rm d}y$$ where $\lambda$ is the intensity of the point process. For a completely random (uniform Poisson) process, $p(r) = \lambda^2$ so $g(r) = 1$.

Formally, the pair correlation function of a stationary point process
is defined by
$$g(r) = \frac{K'(r)}{2\pi r}$$
where $K'(r)$ is the derivative of $K(r)$, the
reduced second moment function (aka ``Ripley's $K$ function'')
of the point process. See `Kest`

for information
about $K(r)$.

For a stationary Poisson process, the pair correlation function is identically equal to 1. Values $g(r) < 1$ suggest inhibition between points; values greater than 1 suggest clustering.

This routine computes an estimate of $g(r)$ by kernel smoothing.

- If
`divisor="r"`

(the default), then the standard kernel estimator (Stoyan and Stoyan, 1994, pages 284--285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are followed exactly. - If
`divisor="d"`

then a modified estimator is used: the contribution from an interpoint distance$d_{ij}$to the estimate of$g(r)$is divided by$d_{ij}$instead of dividing by$r$. This usually improves the bias of the estimator when$r$is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects associated with the boundary of the spatial window):

- If
`correction="translate"`

or`correction="translation"`

then the translation correction is used. For`divisor="r"`

the translation-corrected estimate is given in equation (15.15), page 284 of Stoyan and Stoyan (1994). - If
`correction="Ripley"`

then Ripley's isotropic edge correction is used. For`divisor="r"`

the isotropic-corrected estimate is given in equation (15.18), page 285 of Stoyan and Stoyan (1994). - If
`correction=c("translate", "Ripley")`

then both estimates will be computed.

`kernel`

which is passed to `density`

.
The default is the Epanechnikov kernel, recommended by
Stoyan and Stoyan (1994, page 285). The bandwidth of the smoothing kernel can be controlled by the
argument `bw`

. Its precise interpretation
is explained in the documentation for `density.default`

.
For the Epanechnikov kernel, the argument `bw`

is
equivalent to $h/\sqrt{5}$.

Stoyan and Stoyan (1994, page 285) recommend using the Epanechnikov
kernel with support $[-h,h]$ chosen by the rule of thumn
$h = c/\sqrt{\lambda}$,
where $\lambda$ is the (estimated) intensity of the
point process, and $c$ is a constant in the range from 0.1 to 0.2.
See equation (15.16).
If `bw`

is missing, then this rule of thumb will be applied.
The argument `stoyan`

determines the value of $c$.

The argument `r`

is the vector of values for the
distance $r$ at which $g(r)$ should be evaluated.
There is a sensible default.
If it is specified, `r`

must be a vector of increasing numbers
starting from `r[1] = 0`

,
and `max(r)`

must not exceed half the diameter of
the window.

If the argument `domain`

is given, estimation will be restricted
to this region. That is, the estimate of
$g(r)$ will be based on pairs of points in which the first point lies
inside `domain`

and the second point is unrestricted.
The argument `domain`

should be a window (object of class `"owin"`

) or something acceptable to
`as.owin`

. It must be a subset of the
window of the point pattern `X`

.

To compute a confidence band for the true value of the
pair correlation function, use `lohboot`

.

##### Value

- A function value table
(object of class
`"fv"`

). Essentially a data frame containing the variables r the vector of values of the argument $r$ at which the pair correlation function $g(r)$ has been estimated theo vector of values equal to 1, the theoretical value of $g(r)$ for the Poisson process trans vector of values of $g(r)$ estimated by translation correction iso vector of values of $g(r)$ estimated by Ripley isotropic correction - as required.

##### References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons.

##### See Also

##### Examples

```
data(simdat)
<testonly>simdat <- simdat[seq(1,simdat$n, by=4)]</testonly>
p <- pcf(simdat)
plot(p, main="pair correlation function for simdat")
# indicates inhibition at distances r < 0.3
pd <- pcf(simdat, divisor="d")
# compare estimates
plot(p, cbind(iso, theo) ~ r, col=c("blue", "red"),
ylim.covers=0, main="", lwd=c(2,1), lty=c(1,3), legend=FALSE)
plot(pd, iso ~ r, col="green", lwd=2, add=TRUE)
legend("center", col=c("blue", "green"), lty=1, lwd=2,
legend=c("divisor=r","divisor=d"))
```

*Documentation reproduced from package spatstat, version 1.36-0, License: GPL (>= 2)*