dmixpois(x, mu, sd, invlink = exp, GHorder = 5)
pmixpois(q, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
qmixpois(p, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
rmixpois(n, mu, sd, invlink = exp)
lambda
of the Poisson distribution.TRUE
(the default), probabilities are
$P[X <= x]$,="" otherwise,="" $p[x=""> x]$.dmixpois
gives probability masses,
ppois
gives cumulative probabilities,
qpois
gives (non-negative integer) quantiles, and
rpois
generates (non-negative integer) random deviates.dpois
ppois
,
qpois
and
rpois
except that they apply to a mixture of Poisson distributions. In effect, the Poisson mean parameter lambda
is randomised
by setting lambda = invlink(Z)
where Z
has a Gaussian $N(\mu,\sigma^2)$ distribution.
The default is invlink=exp
which means that
lambda
is lognormal. Set invlink=I
to assume
that lambda
is approximately Normal.
For dmixpois
, pmixpois
and qmixpois
,
the probability distribution is approximated using Gauss-Hermite
quadrature. For rmixpois
, the deviates are simulated
exactly.
dpois
,
gauss.hermite
.dmixpois(7, 10, 1, invlink = I)
dpois(7, 10)
pmixpois(7, log(10), 0.2)
ppois(7, 10)
qmixpois(0.95, log(10), 0.2)
qpois(0.95, 10)
x <- rmixpois(100, log(10), log(1.2))
mean(x)
var(x)
Run the code above in your browser using DataLab