rmhmodel(...)"rmhmodel", which is essentially
a list of parameter values for the model.
There is a print method for this class, which prints
a sensible description of the model chosen.rmh. The algorithm requires the model to be specified
in a particular format: an object of class "rmhmodel". The function rmhmodel takes a
description of a point process model in some other format, and
converts it into an object of class "rmhmodel".
It also checks that the parameters of the model are valid.
The function rmhmodel is generic, with methods
for
[object Object],[object Object],[object Object]
Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193 -- 212.
Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74, 763 -- 770. Scandinavian Journal of Statistics 21, 359--373.
Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79--140.
rmhmodel.ppm,
rmhmodel.default,
rmhmodel.list,
rmh,
rmhcontrol,
rmhstart,
ppm,
Strauss,
Softcore,
StraussHard,
Triplets,
MultiStrauss,
MultiStraussHard,
DiggleGratton,
PairPiece