harmonic(x, y, n)
2 * n
columns giving the values of the
basis functions at the coordinates. Each column is labelled by an
algebraic expression for the corresponding basis function.lm,glm,gam
and ppm
) to specify a
linear predictor which is a harmonic function. A function $f(x,y)$ is harmonic if
This function was implemented on a suggestion of P. McCullagh for fitting nonstationary spatial trend to point process models.
ppm
data(longleaf)
X <- unmark(longleaf)
# inhomogeneous point pattern
<testonly># smaller dataset
longleaf <- longleaf[seq(1,longleaf$n, by=50)]</testonly>
# fit Poisson point process with log-cubic intensity
fit.3 <- ppm(X, ~ polynom(x,y,3), Poisson())
# fit Poisson process with log-cubic-harmonic intensity
fit.h <- ppm(X, ~ harmonic(x,y,3), Poisson())
# Likelihood ratio test
lrts <- 2 * (fit.3$maxlogpl - fit.h$maxlogpl)
x <- X$x
y <- X$y
df <- ncol(polynom(x,y,3)) - ncol(harmonic(x,y,3))
pval <- 1 - pchisq(lrts, df=df)
Run the code above in your browser using DataLab