Last chance! 50% off unlimited learning
Sale ends in
"rmhmodel"(model, ...)
"rmhmodel"
, which is essentially
a validated list of parameter values for the model.There is a print
method for this class, which prints
a sensible description of the model chosen.
rmhmodel
takes a
description of a point process model in some format, and
converts it into an object of class "rmhmodel"
so that simulations of the model can be generated using
the Metropolis-Hastings algorithm rmh
.
This function rmhmodel.list
is the method
for lists. The argument model
should be a named list of parameters
of the form
list(cif, par, w, trend, types)
where cif
and par
are required and the others are
optional. For details about these components,
see rmhmodel.default
.
The subsequent arguments ...
(if any) may also
have these names, and they will take precedence over
elements of the list model
.
Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193 -- 212.
Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction point processes. Biometrika 74, 763 -- 770. Scandinavian Journal of Statistics 21, 359--373.
Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79--140.
rmhmodel
,
rmhmodel.default
,
rmhmodel.ppm
,
rmh
,
rmhcontrol
,
rmhstart
,
ppm
,
Strauss
,
Softcore
,
StraussHard
,
MultiStrauss
,
MultiStraussHard
,
DiggleGratton
,
PairPiece
# Strauss process:
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),
w=c(0,10,0,10))
mod01 <- rmhmodel(mod01)
# Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),
w=owin(c(0,10),c(0,5)))
mod04 <- rmhmodel(mod04)
# Soft core:
w <- square(10)
mod07 <- list(cif="sftcr",
par=list(beta=0.8,sigma=0.1,kappa=0.5),
w=w)
mod07 <- rmhmodel(mod07)
# Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",
par=list(beta=beta,gamma=gmma,radii=r),
w=square(250))
mod08 <- rmhmodel(mod08)
# specify types
mod09 <- rmhmodel(list(cif="straussm",
par=list(beta=beta,gamma=gmma,radii=r),
w=square(250),
types=c("A", "B")))
# Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
ri <- matrix(c(45,45,45,45),2,2)
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;
exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
# log quadratic trend
tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
# log linear trend
mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=ri,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))
mod10 <- rmhmodel(mod10)
# Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
mod17 <- rmhmodel(mod17)
Run the code above in your browser using DataLab