For a multitype point pattern,
estimate the multitype
Kcross(X, i, j, r=NULL, breaks=NULL, correction,
…, ratio=FALSE, from, to )
The observed point pattern,
from which an estimate of the cross type
The type (mark value)
of the points in X
from which distances are measured.
A character string (or something that will be converted to a
character string).
Defaults to the first level of marks(X)
.
The type (mark value)
of the points in X
to which distances are measured.
A character string (or something that will be
converted to a character string).
Defaults to the second level of marks(X)
.
numeric vector. The values of the argument
This argument is for internal use only.
A character vector containing any selection of the
options "border"
, "bord.modif"
,
"isotropic"
, "Ripley"
, "translate"
,
"translation"
,
"none"
or "best"
.
It specifies the edge correction(s) to be applied.
Alternatively correction="all"
selects all options.
Ignored.
Logical.
If TRUE
, the numerator and denominator of
each edge-corrected estimate will also be saved,
for use in analysing replicated point patterns.
An alternative way to specify i
and j
respectively.
An object of class "fv"
(see fv.object
).
Essentially a data frame containing numeric columns
the values of the argument
the theoretical value of
If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of K(r).
The arguments i
and j
are always interpreted as
levels of the factor X$marks
. They are converted to character
strings if they are not already character strings.
The value i=1
does not
refer to the first level of the factor.
This function Kcross
and its companions
Kdot
and Kmulti
are generalisations of the function Kest
to multitype point patterns.
A multitype point pattern is a spatial pattern of points classified into a finite number of possible ``colours'' or ``types''. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.
The argument X
must be a point pattern (object of class
"ppp"
) or any data that are acceptable to as.ppp
.
It must be a marked point pattern, and the mark vector
X$marks
must be a factor.
The arguments i
and j
will be interpreted as
levels of the factor X$marks
.
If i
and j
are missing, they default to the first
and second level of the marks factor, respectively.
The ``cross-type'' (type
An estimate of
This algorithm estimates the distribution function X
. It assumes that X
can be treated
as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through
a bounded window.
The window (which is specified in X
as Window(X)
)
may have arbitrary shape.
Biases due to edge effects are
treated in the same manner as in Kest
,
using the border correction.
The argument r
is the vector of values for the
distance
The pair correlation function can also be applied to the
result of Kcross
; see pcf
.
Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.
Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.
Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants' nests. Applied Statistics 32, 293--303
Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several types of points. J. Royal Statist. Soc. Ser. B 44, 406--413.
Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.
Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition. Springer Verlag, 1995.
# NOT RUN {
# amacrine cells data
K01 <- Kcross(amacrine, "off", "on")
plot(K01)
# }
# NOT RUN {
# }
# NOT RUN {
K10 <- Kcross(amacrine, "on", "off")
# synthetic example: point pattern with marks 0 and 1
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
K <- Kcross(pp, "0", "1")
K <- Kcross(pp, 0, 1) # equivalent
# }
Run the code above in your browser using DataLab