Fits a recursive partition model to point pattern data.
rppm(…, rpargs=list())
Arguments passed to ppm
specifying the point pattern data and the explanatory covariates.
Optional list of arguments passed to rpart
controlling the recursive partitioning procedure.
An object of class "rppm"
. There are methods
for print
, plot
, fitted
, predict
and
prune
for this class.
This function attempts to find a simple rule for predicting low and high intensity regions of points in a point pattern, using explanatory covariates.
The arguments …
specify the point pattern data
and explanatory covariates in the same way as they would be
in the function ppm
.
The recursive partitioning algorithm rpart
is then used to find a partitioning rule.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984) Classification and Regression Trees. Wadsworth.
# NOT RUN {
# New Zealand trees data: trees planted along border
# Use covariates 'x', 'y'
nzfit <- rppm(nztrees ~ x + y)
nzfit
prune(nzfit, cp=0.035)
# Murchison gold data: numeric and logical covariates
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
mfit <- rppm(gold ~ dfault + greenstone, data=mur)
mfit
# Gorillas data: factor covariates
# (symbol '.' indicates 'all variables')
gfit <- rppm(unmark(gorillas) ~ . , data=gorillas.extra)
gfit
# }
Run the code above in your browser using DataLab