Experimental extension to ppm
which finds optimal values of the irregular trend parameters in a
point process model.
ippm(Q, …,
iScore=NULL,
start=list(),
covfunargs=start,
nlm.args=list(stepmax=1/2),
silent=FALSE,
warn.unused=TRUE)
Arguments passed to ppm
to fit the point process model.
Optional. A named list of R functions that compute the partial derivatives of the logarithm of the trend, with respect to each irregular parameter. See Details.
Named list containing initial values of the irregular parameters over which to optimise.
Argument passed to ppm
.
A named list containing values for all irregular parameters
required by the covariates in the model.
Must include all the parameters named in start
.
Optional list of arguments passed to nlm
to control the optimization algorithm.
Logical. Whether to print warnings if the optimization algorithm fails to converge.
Logical. Whether to print a warning if some of the parameters
in start
are not used in the model.
A fitted point process model (object of class "ppm"
).
This function is an experimental extension to the
point process model fitting command ppm
.
The extension allows the trend of the model to include irregular parameters,
which will be maximised by a Newton-type iterative
method, using nlm
.
For the sake of explanation,
consider a Poisson point process with intensity function
To fit this model using ippm
, we specify the
intensity using the trend
formula
in the same way as usual for ppm
.
The trend formula is a representation of the log intensity.
In the above example the log intensity is
~Z + offset(log(f))
. Note that the irregular part of the model
is an offset term, which means that it is included in the log trend
as it is, without being multiplied by another regular parameter.
The optimisation runs faster if we specify the derivative
of (x,y)
.
Thus, to code such a problem,
The argument trend
should define the
log intensity, with the irregular part as an offset;
The argument start
should be a list
containing initial values of each of the irregular parameters;
The argument iScore
, if provided,
must be a list (with one entry
for each entry of start
) of functions
with arguments x,y,…
, that evaluate the partial derivatives
of
The coded example below illustrates the model with two irregular
parameters
Arguments …
passed to ppm
may
also include interaction
. In this case the model is not
a Poisson point process but a more general Gibbs point process;
the trend formula trend
determines the first-order trend
of the model (the first order component of the conditional intensity),
not the intensity.
# NOT RUN {
nd <- 32
# }
# NOT RUN {
gamma0 <- 3
delta0 <- 5
POW <- 3
# Terms in intensity
Z <- function(x,y) { -2*y }
f <- function(x,y,gamma,delta) { 1 + exp(gamma - delta * x^POW) }
# True intensity
lamb <- function(x,y,gamma,delta) { 200 * exp(Z(x,y)) * f(x,y,gamma,delta) }
# Simulate realisation
lmax <- max(lamb(0,0,gamma0,delta0), lamb(1,1,gamma0,delta0))
set.seed(42)
X <- rpoispp(lamb, lmax=lmax, win=owin(), gamma=gamma0, delta=delta0)
# Partial derivatives of log f
DlogfDgamma <- function(x,y, gamma, delta) {
topbit <- exp(gamma - delta * x^POW)
topbit/(1 + topbit)
}
DlogfDdelta <- function(x,y, gamma, delta) {
topbit <- exp(gamma - delta * x^POW)
- (x^POW) * topbit/(1 + topbit)
}
# irregular score
Dlogf <- list(gamma=DlogfDgamma, delta=DlogfDdelta)
# fit model
ippm(X ~Z + offset(log(f)),
covariates=list(Z=Z, f=f),
iScore=Dlogf,
start=list(gamma=1, delta=1),
nlm.args=list(stepmax=1),
nd=nd)
# }
Run the code above in your browser using DataLab