kernel.squint

0th

Percentile

Integral of Squared Kernel

Computes the integral of the squared kernel, for the kernels used in density estimation for numerical data.

Keywords
methods, smooth, nonparametric
Usage
kernel.squint(kernel = "gaussian", bw=1)
Arguments
kernel

String name of the kernel. Options are "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching is used).

bw

Bandwidth (standard deviation) of the kernel.

Details

Kernel estimation of a probability density in one dimension is performed by density.default using a kernel function selected from the list above.

This function computes the integral of the squared kernel, $$ R = \int_{-\infty}^{\infty} k(x)^2 \, {\rm d}x $$ where \(k(x)\) is the kernel with bandwidth bw.

Value

A single number.

See Also

density.default, dkernel, kernel.moment, kernel.factor

Aliases
  • kernel.squint
Examples
# NOT RUN {
   kernel.squint("gaussian", 3)

   # integral of squared Epanechnikov kernel with half-width h=1
   h <- 1
   bw <- h/kernel.factor("epa")
   kernel.squint("epa", bw)
# }
Documentation reproduced from package spatstat, version 1.55-1, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.