# pseudoR2

0th

Percentile

##### Calculate Pseudo-R-Squared for Point Process Model

Given a fitted point process model, calculate the pseudo-R-squared value, which measures the fraction of variation in the data that is explained by the model.

Keywords
models, spatial
##### Usage
pseudoR2(object, …)  # S3 method for ppm
pseudoR2(object, …, keepoffset=TRUE)  # S3 method for lppm
pseudoR2(object, …, keepoffset=TRUE)
##### Arguments
object

Fitted point process model. An object of class "ppm" or "lppm".

keepoffset

Logical value indicating whether to retain offset terms in the model when computing the deviance difference. See Details.

Additional arguments passed to deviance.ppm or deviance.lppm.

##### Details

The function pseudoR2 is generic, with methods for fitted point process models of class "ppm" and "lppm".

This function computes McFadden's pseudo-Rsquared $$R^2 = 1 - \frac{D}{D_0}$$ where $D$ is the deviance of the fitted model object, and $D_0$ is the deviance of the null model. Deviance is defined as twice the negative log-likelihood or log-pseudolikelihood.

The null model is usually obtained by re-fitting the model using the trend formula ~1. However if the original model formula included offset terms, and if keepoffset=TRUE (the default), then the null model formula consists of these offset terms. This ensures that the pseudoR2 value is non-negative.

##### Value

A single numeric value.

deviance.ppm, deviance.lppm.

##### Aliases
• pseudoR2
• pseudoR2.ppm
• pseudoR2.lppm
##### Examples
# NOT RUN {
fit <- ppm(swedishpines ~ x+y)
pseudoR2(fit)

xcoord <- as.im(function(x,y) x, Window(swedishpines))
fut <- ppm(swedishpines ~ offset(xcoord/200) + y)
pseudoR2(fut)
# }

Documentation reproduced from package spatstat, version 1.55-1, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.