LambertW

0th

Percentile

Lambert's W Function

Computes Lambert's W-function.

Keywords
math
Usage
LambertW(x)
Arguments
x

Vector of nonnegative numbers.

Details

Lambert's W-function is the inverse function of \(f(y) = y e^y\). That is, \(W\) is the function such that $$ W(x) e^{W(x)} = x $$

This command LambertW computes \(W(x)\) for each entry in the argument x. If the library gsl has been installed, then the function lambert_W0 in that library is invoked. Otherwise, values of the W-function are computed by root-finding, using the function uniroot.

Computation using gsl is about 100 times faster.

If any entries of x are infinite or NA, the corresponding results are NA.

Value

Numeric vector.

References

Corless, R, Gonnet, G, Hare, D, Jeffrey, D and Knuth, D (1996), On the Lambert W function. Computational Mathematics, 5, 325--359.

Roy, R and Olver, F (2010), Lambert W function. In Olver, F, Lozier, D and Boisvert, R (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press.

Aliases
  • LambertW
Examples
# NOT RUN {
   LambertW(exp(1))
# }
Documentation reproduced from package spatstat, version 1.59-0, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.