dffit.ppm

0th

Percentile

Case Deletion Effect Measure of Fitted Model

Computes the case deletion effect measure DFFIT for a fitted model.

Keywords
models, spatial
Usage
dffit(object, …)

# S3 method for ppm dffit(object, …, collapse = FALSE, dfb = NULL)

Arguments
object

A fitted model, such as a point process model (object of class "ppm").

Additional arguments passed to dfbetas.ppm.

collapse

Logical value specifying whether to collapse the vector-valued measure to a scalar-valued measure by adding all the components.

dfb

Optional. The result of dfbetas(object), if it has already been computed.

Details

The case deletion effect measure DFFIT is a model diagnostic traditionally used for regression models. In that context, DFFIT[i,j] is the negative change, in the value of the jth term in the linear predictor, that would occur if the ith data value was deleted. It is closely related to the diagnostic DFBETA.

For a spatial point process model, dffit computes the analogous spatial case deletion diagnostic, described in Baddeley, Rubak and Turner (2018).

Value

A measure (object of class "msr").

References

Baddeley, A., Rubak, E. and Turner, R. (2018) Leverage and influence diagnostics for Gibbs spatial point processes. In preparation.

See Also

dfbetas.ppm

Aliases
  • dffit
  • dffit.ppm
Examples
# NOT RUN {
   
# }
# NOT RUN {
   X <- rpoispp(function(x,y) { exp(3+3*x) })
   fit <- ppm(X ~x+y)
   
# }
# NOT RUN {
   plot(dffit(fit))
   plot(dffit(fit, collapse=TRUE))
   
# }
# NOT RUN {
   
# }
Documentation reproduced from package spatstat, version 1.59-0, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.