data(swedishpines)
   X <- swedishpines
   plot(X, main="Swedish Pines data")
   # Poisson process
   fit <- ppm(X, ~1, Poisson())
   Xsim <- rmh(fit)
   plot(Xsim, main="simulation from fitted Poisson model")
   # Strauss process   
   fit <- ppm(X, ~1, Strauss(r=7), rbord=7)
   Xsim <- rmh(fit, control=list(nrep=1e3))
   plot(Xsim, main="simulation from fitted Strauss model")
   # Strauss process simulated on a larger window
   # then clipped to original window
   Xsim <- rmh(fit, control=list(nrep=1e3, expand=2, periodic=TRUE))
   
   # Strauss - hard core process
   fit <- ppm(X, ~1, StraussHard(r=7,hc=2), rbord=7)
   Xsim <- rmh(fit, start=list(n.start=X$n), control=list(nrep=1e3))
   plot(Xsim, main="simulation from fitted Strauss hard core model")
   # Geyer saturation process
   fit <- ppm(X, ~1, Geyer(r=7,sat=2), rbord=7)
   Xsim <- rmh(fit, start=list(n.start=X$n), control=list(nrep=1e3))
   plot(Xsim, main="simulation from fitted Geyer model")
   # soft core interaction process
   Q <- quadscheme(X, nd=50)
   fit <- ppm(Q, ~1, Softcore(kappa=0.1))
   Xsim <- rmh(fit, start=list(n.start=X$n), control=list(nrep=1e3))
   plot(Xsim, main="simulation from fitted Soft Core model")
   data(cells)
   plot(cells)
   # Diggle-Gratton pairwise interaction model
   fit <- ppm(cells, ~1, DiggleGratton(0.05, 0.1))
   Xsim <- rmh(fit, start=list(n.start=cells$n), control=list(nrep=1e3))
   plot(Xsim, main="simulation from fitted Diggle-Gratton model")
   X <- rSSI(0.05, 100)
   plot(X, main="new data")
   # piecewise-constant pairwise interaction function
   fit <- ppm(X, ~1, PairPiece(seq(0.02, 0.1, by=0.01)))
   Xsim <- rmh(fit, control=list(nrep=1e3))
   plot(Xsim, main="simulation from fitted pairwise model")
   # marked point pattern
   data(amacrine)
   Y <- amacrine
   plot(Y, main="Amacrine data")
   # marked Poisson models 
   fit <- ppm(Y)
   Ysim <- rmh(fit)
   plot(Ysim, main="simulation from ppm(Y)")
   fit <- ppm(Y,~marks)
   Ysim <- rmh(fit)
   plot(Ysim, main="simulation from ppm(Y, ~marks)")
   fit <- ppm(Y,~polynom(x,y,2))
   Ysim <- rmh(fit)
   plot(Ysim, main="simulation from ppm(Y, ~polynom(x,y,2))")
   fit <- ppm(Y,~marks+polynom(x,y,2))
   Ysim <- rmh(fit)
   plot(Ysim, main="simulation from ppm(Y, ~marks+polynom(x,y,2))")
   fit <- ppm(Y,~marks*polynom(x,y,2))
   Ysim <- rmh(fit)
   plot(Ysim, main="simulation from ppm(Y, ~marks*polynom(x,y,2))")
   # multitype Strauss models
   MS <- MultiStrauss(types = levels(Y$marks),
                      radii=matrix(0.07, ncol=2, nrow=2))
   fit <- ppm(Y, ~marks, MS)
   Ysim <- rmh(fit, control=list(nrep=1e3))
   plot(Ysim, main="simulation from fitted Multitype Strauss")
   fit <- ppm(Y,~marks*polynom(x,y,2), MS)
   Ysim <- rmh(fit, control=list(nrep=1e3))
   plot(Ysim, main="simulation from fitted inhomogeneous Multitype Strauss")Run the code above in your browser using DataLab