## Small study to identify appropriate reflection border to mimic
## unreflected schemes
k <- .5
g <- log(390)
zrs <- -(0:10)
ZRxgrsr.arl <- Vectorize(xgrsr.arl, "zr")
arls <- ZRxgrsr.arl(k, g, 0, zr=zrs)
data.frame(zrs, arls)
## Table 2 from Knoth (2006)
## original values are
# mu arl
# 0 697
# 0.5 33
# 1 10.4
# 1.5 6.2
# 2 4.4
# 2.5 3.5
# 3 2.9
#
k <- .5
g <- log(390)
zr <- -5 # see first example
mus <- (0:6)/2
Mxgrsr.arl <- Vectorize(xgrsr.arl, "mu")
arls <- round(Mxgrsr.arl(k, g, mus, zr=zr), digits=1)
data.frame(mus, arls)
## Table 4 from Moustakides et al. (2009)
## original values are
# gamma A ARL/E_infty(L) SADD/E_1(L)
# 50 28.02 50.79 5.46
# 100 56.04 100.79 6.71
# 500 280.19 500.8 9.78
# 1000 560.37 1000.79 11.14
# 5000 2801.75 5001.75 14.34
# 10000 5603.7 10000.78 15.73
Gxgrsr.arl <- Vectorize("xgrsr.arl", "g")
As <- c(28.02, 56.04, 280.19, 560.37, 2801.75, 5603.7)
gs <- log(As)
theta <- 1
zr <- -6
arls0 <- round(Gxgrsr.arl(theta/2, gs, 0, zr=zr, r=100), digits=2)
arls1 <- round(Gxgrsr.arl(theta/2, gs, theta, zr=zr, r=100), digits=2)
data.frame(As, arls0, arls1)Run the code above in your browser using DataLab