Learn R Programming

spcosa (version 0.4-6)

spsample-methods: Spatial Sampling of Compact Strata

Description

Methods for sampling in compact strata.

Arguments

Methods

x = "CompactStratification", n = "missing", type = "missing"

samples the centroids of each stratum.

x = "CompactStratification", n = "numeric", type = "missing"

stratified simple random sampling with \(n\) samples per stratum.

x = "CompactStratificationEqualArea", n = "numeric", type = "character"

if type = "composite", stratified simple random sampling of \(n\) composites.

x = "CompactStratificationPriorPoints", n = "missing", type = "missing"

spatial infill sampling

See Also

stratify for stratification, spsample for other types of spatial sampling, and estimate for inference. See the package vignette for more information and examples.

Examples

Run this code
  # Note: the example below requires the 'sf'-package.
  if (FALSE) {
    if (require(sf)) {
    
      # read a vector representation of the `Farmsum' field
      shpFarmsum <- as(st_read(
          dsn = system.file("maps", package = "spcosa"),
          layer = "farmsum"), "Spatial")
    
      # stratify `Farmsum' into 50 strata
      # NB: increase argument 'nTry' to get better results
      set.seed(314)
      myStratification <- stratify(shpFarmsum, nStrata = 50, nTry = 1)
    
      # sample two sampling units per stratum
      mySamplingPattern <- spsample(myStratification, n = 2)
    
      # plot the resulting sampling pattern on
      # top of the stratification
      plot(myStratification, mySamplingPattern)
    
    }
  }

Run the code above in your browser using DataLab