Usage
GMerrorsar(formula, data = list(), listw, na.action = na.fail,
zero.policy = NULL, return_LL = FALSE, method="nlminb",
control = list(), pars, verbose=NULL, sparse_method="Matrix",
returnHcov=FALSE, pWOrder=250, tol.Hcov=1.0e-10)
## S3 method for class 'gmsar':
summary(object, correlation = FALSE, Hausman=FALSE, ...)
Arguments
formula
a symbolic description of the model to be fit. The details
of model specification are given for lm()
data
an optional data frame containing the variables in the model.
By default the variables are taken from the environment which the function
is called.
listw
a listw
object created for example by nb2listw
na.action
a function (default na.fail
), can also be na.omit
or na.exclude
with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to
zero.policy
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without
neighbours, if FALSE (default) assign NA - causing GMerrorsar()
to terminate with an error
return_LL
default FALSE, if TRUE, try to calculate the log likelihood of the function for the fitted model values --- see details
method
default "nlminb"
, or optionally a method passed to optim
to use an alternative optimizer
control
A list of control parameters. See details in optim
or nlminb
. pars
starting values for $\lambda$ and $\sigma^2$ for GMM optimisation, if missing (default), approximated from initial OLS model as the autocorrelation coefficient corrected for weights style and model sigma squared
verbose
default NULL, use global option value; if TRUE, reports function values during optimization.
sparse_method
default "Matrix", can also be "spam" to use spam package objects for finding the Jacobian
returnHcov
default FALSE, return the Vo matrix for a spatial Hausman test
tol.Hcov
the tolerance for computing the Vo matrix (default=1.0e-10)
pWOrder
default 250, if returnHcov=TRUE, pass this order to powerWeights
as the power series maximum limit
object
gmsar
object from GMerrorsar
correlation
logical; (default=FALSE), TRUE not available
Hausman
if TRUE, the results of the Hausman test for error models are reported
...
summary
arguments passed through