The global G statistic for spatial autocorrelation, complementing the local Gi LISA measures: localG
.
globalG.test(x, listw, zero.policy=NULL, alternative="greater",
spChk=NULL, adjust.n=TRUE, B1correct=TRUE, adjust.x=TRUE, Arc_all_x=FALSE)
a numeric vector the same length as the neighbours list in listw
a listw
object created for example by nb2listw
; if a sequence of distance bands is to be used, it is recommended that the weights style be binary (one of c("B", "C", "U")
).
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
a character string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()
default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted
default TRUE, if TRUE, the erratum referenced below: "On page 195, the coefficient of W2 in B1, (just below center of the page) should be 6, not 3." is applied; if FALSE, 3 is used (as in CrimeStat IV)
default TRUE, if TRUE, x values of observations with no neighbours are omitted in the denominator of G
default FALSE, if Arc_all_x=TRUE and adjust.x=TRUE, use the full x vector in part of the denominator term for G
A list with class htest
containing the following components:
the value of the standard deviate of Moran's I.
the p-value of the test.
the value of the observed statistic, its expectation and variance.
a character string describing the alternative hypothesis.
a character string giving the name(s) of the data.
Getis. A, Ord, J. K. 1992 The analysis of spatial association by use of distance statistics, Geographical Analysis, 24, p. 195; see also Getis. A, Ord, J. K. 1993 Erratum, Geographical Analysis, 25, p. 276; Bivand RS, Wong DWS 2018 Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716--748 10.1007/s11749-018-0599-x
# NOT RUN {
nc.sids <- st_read(system.file("shapes/sids.shp", package="spData")[1], quiet=TRUE)
sidsrate79 <- (1000*nc.sids$SID79)/nc.sids$BIR79
dists <- c(10, 20, 30, 33, 40, 50, 60, 70, 80, 90, 100)
ndists <- length(dists)
ZG <- vector(mode="list", length=ndists)
names(ZG) <- as.character(dists)
milesxy <- cbind(nc.sids$east, nc.sids$north)
for (i in 1:ndists) {
thisnb <- dnearneigh(milesxy, 0, dists[i])
thislw <- nb2listw(thisnb, style="B", zero.policy=TRUE)
ZG[[i]] <- globalG.test(sidsrate79, thislw, zero.policy=TRUE)
}
t(sapply(ZG, function(x) c(x$estimate[1], x$statistic, p.value=unname(x$p.value))))
for (i in 1:ndists) {
thisnb <- dnearneigh(milesxy, 0, dists[i])
thislw <- nb2listw(thisnb, style="B", zero.policy=TRUE)
ZG[[i]] <- globalG.test(sidsrate79, thislw, zero.policy=TRUE, alternative="two.sided")
}
t(sapply(ZG, function(x) c(x$estimate[1], x$statistic, p.value=unname(x$p.value))))
# }
Run the code above in your browser using DataLab