Learn R Programming

specmine (version 1.0)

pca_importance: PCA importance

Description

Gets the importance from the PCs.

Usage

pca_importance(pca.res, pcs = 1:length(pca.res$sdev), sd = T, prop = T, cumul = T, min.cum = NULL)

Arguments

pca.res
prcomp object with the PCA results.
pcs
vector with the PCs to get.
sd
boolean value indicating if standard deviation will be returned or not.
prop
boolean value that indicates if the proportion of variance is returned or not.
cumul
boolean value that indicates if the cumulative variance is returned or not.
min.cum
allows to define minimum cumulative % of variance

Value

Returns the information about the importance of the PCs.

Examples

Run this code
  ## Example of performing a classical PCA analysis
  data(cachexia)
  pca.result = pca_analysis_dataset(cachexia)
  pca_importance(pca.result, pcs = 1:5)

Run the code above in your browser using DataLab