powered by
Gets the importance from the PCs.
pca_importance(pca.res, pcs = 1:length(pca.res$sdev), sd = TRUE, prop = TRUE, cumul = TRUE, min.cum = NULL)
prcomp object with the PCA results.
vector with the PCs to get.
boolean value indicating if standard deviation will be returned or not.
boolean value that indicates if the proportion of variance is returned or not.
boolean value that indicates if the cumulative variance is returned or not.
allows to define minimum cumulative % of variance
Returns the information about the importance of the PCs.
# NOT RUN { ## Example of performing a classical PCA analysis library(specmine.datasets) data(cachexia) pca.result = pca_analysis_dataset(cachexia) pca_importance(pca.result, pcs = 1:5) # }
Run the code above in your browser using DataLab