Learn R Programming

sperich (version 1.3-7)

evaluate: Result grid evaluation

Description

This function evaluates the result grids of species richness estimation.

Usage

evaluate(result.grid.one, result.grid.two, 
		title.one="Histogramm of species richness", 
		title.two="Histogramm of species richness", xmax=400, ymax=1000,
		directory=getwd(), filename="histogramm.png")

Arguments

result.grid.one
A result grid of species richness estimation. If the value is 'NULL', the grid is ignored and only the other grid will be included in the resulting png-file.
result.grid.two
A result grid of species richness estimation. If the value is 'NULL', the grid is ignored and only the other grid will be included in the resulting png-file.
title.one
The title for the histogramm of the first grid ('result.grid.one').
title.two
The title for the histogramm of the second grid ('result.grid.two').
xmax
The maximum value of the abscissa respectively the maximum number of species in the grid.
ymax
The maximum value of the ordinate respectively the maximum frequency shown in the histogramm.
directory
The directory the png-file is created in.
filename
The name of the created png-file.

Value

  • This function creates a png-file with one or two histogramms (depending on input) and additional statistic informations.

Details

This routine evaluates the result grids of a species richness estimation (details in Raedig et al. 2010). It creates one or two histogramms (depending on input) of the species occurences with additional information about the total number of species of the grid and other statistic scores. It is possible to create on png-file for every result grid or to compare two result-grids in one png-file, depending on how many grids are defined as input.

References

Raedig, C., Dorman, C.F., Hildebrandt, A. and Lautenbach, S. (2010). Reassessing Neotropical angiosperm distribution patterns based on monographic data: a geometric interpolation approach. Biodivers Conserv, 19, 1523-1546.

Examples

Run this code
#load data
data(dataset.all.species)
data(dataset.landwater)

#create grid parameters
dimension <- getDimension(dataset.all.species, resolution=1)
shift <- getShift(dataset.all.species)

#create landwatermask
landwatermask.nocoast <- createLandwatermask(dataset.landwater,
dimension, shift, resolution=1)

#estimate species richness
species.richness.weighted <- species.richness(dataset.all.species,
landwatermask.nocoast, distances=1:10, weight=0.5, dimension,
shift, resolution=1, upperbound=3000, all.species=1:20)

#evaluation
evaluate(species.richness.weighted, NULL, title.one="Histogramm 1")

Run the code above in your browser using DataLab