For continuous response data use plotitem.cont whereas discrete response data use plotitem.disc. For joint continuous and discrete data, use plotgroup.
plotitem.cont(
param,
nquad = 21,
npoints = 101,
xlim = c(-2.5, 2.5),
ylim = c(0, 1),
normal = TRUE,
FUN = NULL,
plot = TRUE,
type = "contour",
...
)plotitem.disc(
param,
ncat,
npoints = 101,
xlim = c(-2.5, 2.5),
normal = TRUE,
FUN = NULL,
plot = TRUE,
col = 1:ncat,
lty = rep(1, ncat),
...
)
plotgroup(
param,
nquad = 21,
npoints = 101,
lim = c(-2.5, 2.5),
normal = TRUE,
plot = TRUE,
type = "contour",
...
)
plots. Item level perspective and contour plot
parameter vector estimated from spfa model
an integer value of number of quadrature points. Default is 21
an integer value of number of x and y levels in the plot
the x limits of the plot. Two numerical values indicating the lower and upper limits
the y limits of the plot. Two numerical values indicating the lower and upper limits of the density. Note y is rescaled to a uniform [0,1] distribution.
a logical value TRUE or FALSE indicating which density is used to rescale y.
a user supplied function to rescale.
a logical value TRUE or FALSE indicating whether the plot is visualized.
the type of plot to be visualized. The default is the contour plot contour. It can also be changed to "persp" indicating perspective plots.
an integer value indicating the number of categories for the discrete item.
color of the line.
line type
limit
# Contour plot of the first item
plotitem.cont(spfa::spfa_example$par[[1]])
Run the code above in your browser using DataLab