# NOT RUN {
spflow_results <- spflow(y9 ~ . + G_(DISTANCE),multi_net_usa_ge)
# General methods
results(spflow_results) # data.frame of main results
coef(spflow_results) # vector of estimated coefficients
fitted(spflow_results) # vector of fitted values
resid(spflow_results) # vector of residuals
nobs(spflow_results) # number of observations
sd_error(spflow_results) # standard deviation of the error term
predict(spflow_results) # computation of the in sample predictor
# MLE methods
logLik(spflow_results) # value of the likelihood function
# MLE, OLS and S2SLS methods
varcov(spflow_results) # variance covariance matrix of the estimators
# MCMC methods
spflow_results_mcmc <- spflow(
y2 ~ . + G_(DISTANCE),
multi_net_usa_ge,
flow_control = spflow_control(estimation_method = "mcmc",
model = "model_2"))
results(spflow_results)
mcmc_results(spflow_results_mcmc) # parameter values during the mcmc sampling
# }
Run the code above in your browser using DataLab