ModelEstimates
stores information about MLE estimates of a spatial stochastic frontier model
status(object)resultParams(object)
hessian(object)
stdErrors(object)
efficiencies(object)
# S4 method for ModelEstimates
show(object)
# S4 method for ModelEstimates
coefficients(object)
# S4 method for ModelEstimates
resultParams(object)
# S4 method for ModelEstimates
fitted(object)
# S4 method for ModelEstimates
efficiencies(object)
# S4 method for ModelEstimates
residuals(object)
# S4 method for ModelEstimates
stdErrors(object)
# S4 method for ModelEstimates
hessian(object)
# S4 method for ModelEstimates
status(object)
# S4 method for ModelEstimates
summary(object)
an object of ModelEstimates class
coefficients
estimated values of model parameters
resultParams
raw estimated values
status
model estimation status: 0 - Success 1 - Failed; convergence is not achieved 1000 - Failed; unexpected exception 1001 - Failed; Initial values for MLE cannot be estimated 1002 - Failed; Maximum likelihood function is infinite
logL
value of the log-likelihood function
logLcalls
information abour a number of log-likelihood function and its gradient function calls
hessian
Hessian matrix for estimated coefficients
stdErrors
standard errors of estimated coefficients
residuals
model residuals
fitted
model fitted values
efficiencies
estimates of efficiency values for sample observations
ModelEstimates
stores all parameter estimates and additional statistics, available after estimation of a spatial stochastic frontier model.