Learn R Programming

spgwr (version 0.5-7)

ggwr: Generalised geographically weighted regression

Description

The function implements generalised geographically weighted regression approach to exploring spatial non-stationarity for given global bandwidth and chosen weighting scheme.

Usage

ggwr(formula, data = list(), coords, bandwidth, gweight = gwr.Gauss,
 adapt = NULL, fit.points, family = gaussian, longlat = FALSE, type = 
c("working", "deviance", "pearson", "response"))

Arguments

formula
regression model formula as in glm
data
model data frame as in glm, or may be a SpatialPointsDataFrame or SpatialPolygonsDataFrame object as defined in package sp
coords
matrix of coordinates of points representing the spatial positions of the observations
bandwidth
bandwidth used in the weighting function, possibly calculated by ggwr.sel
gweight
geographical weighting function, at present gwr.Gauss() default, or gwr.gauss(), the previous default or gwr.bisquare()
adapt
either NULL (default) or a proportion between 0 and 1 of observations to include in weighting scheme (k-nearest neighbours)
fit.points
an object containing the coordinates of fit points; often an object from package sp; if missing, the coordinates given through the data argument object, or the coords argument are used
family
a description of the error distribution and link function to be used in the model, see glm
longlat
if TRUE, use distances on an ellipse with WGS84 parameters
type
the type of residuals which should be returned. The alternatives are: "working" (default), "pearson", "deviance" and "response"

Value

  • A list of class gwr:
  • SDFa SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") with fit.points, weights, GWR coefficient estimates, R-squared, and coefficient standard errors in its "data" slot.
  • lhatLeung et al. L matrix
  • lmOrdinary least squares global regression on the same model formula.
  • bandwidththe bandwidth used.
  • this.callthe function call used.

References

Fotheringham, A.S., Brunsdon, C., and Charlton, M.E., 2002, Geographically Weighted Regression, Chichester: Wiley; http://www.nuim.ie/ncg/GWR/index.htm

See Also

ggwr.sel, gwr

Examples

Run this code
library(maptools)
xx <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1], 
  IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))
bw <- ggwr.sel(SID74 ~ I(NWBIR74/BIR74) + offset(log(BIR74)), data=xx,
  family=poisson(), longlat=TRUE)
nc <- ggwr(SID74 ~ I(NWBIR74/BIR74) + offset(log(BIR74)), data=xx,
  family=poisson(), longlat=TRUE, bandwidth=bw)
nc
nc <- ggwr(SID74 ~ I(NWBIR74/10000) + offset(log(BIR74)), data=xx,
  family=poisson(), longlat=TRUE, bandwidth=bw)
nc
nc <- ggwr(SID74 ~ I(NWBIR74/10000) + offset(log(BIR74)), data=xx,
  family=quasipoisson(), longlat=TRUE, bandwidth=bw)
nc

Run the code above in your browser using DataLab