Learn R Programming

spinifex (version 0.1.0)

breastcancer: Wisconsin Breast Cancer Database

Description

Formatted subset of mlbench::BreastCancer. See mlbench for original data more context.

Usage

breastcancer

Arguments

Format

Data frame (tibble) with 675 observations on 10 variables: a factor Id, 9 numeric variables, and target class.

Details

The objective is to identify each of a number of benign or malignant classes. Samples arrive periodically as Dr. Wolberg reports his clinical cases. The database therefore reflects this chronological grouping of the data. This grouping information appears immediately below, having been removed from the data itself. Each variable except for the first was converted into 11 primitive numerical attributes with values ranging from 0 through 10. There are 16 missing attribute values.

Data frame (tibble) with 675 observations on 10 variables: a factor Id, 9 numeric variables, and target class:

  • Id, Sample code number

  • Cl.thickness, Clump thickness

  • Cell.size, Uniformity of cell size

  • Cell.shape, Uniformity of cell shape

  • Marg.adhesion, Marginal adhesion

  • Epith.c.size, Single Epthelial cell size

  • Bare.nuclei, Bare nuclei

  • Bl.cromatin, Bland chromatin

  • Normal.nucleoli, Normal Nucleoli

  • Class, Class

Reproducing this dataset:

library("mlbench")

d <- mlbench::BreastCancer d <- d[!duplicated(d), ] d <- d[complete.cases(d), ] mat <- as.matrix(d[ , 2:9]) mat <- apply(mat, 2, as.numeric) breastbancer <- dplyr::as.tibble(data.frame(Id = d$Id, mat, Class = d$Class))

Examples

Run this code
# NOT RUN {
str(breastcancer)
# }
# NOT RUN {
play_manual_tour(data = breastcancer[, 2:9], manip_var = 3, init_rescale_data = TRUE)
# }

Run the code above in your browser using DataLab