Learn R Programming

splancs (version 2.01-16)

pcp: Fit a Poisson cluster process

Description

The function fits a Poisson cluster process to point data for a given enclosing polygon and fit parameters

Usage

pcp(point.data, poly.data, h0=NULL, expo=0.25, n.int=20)

Arguments

point.data
a points object
poly.data
a polygon enclosing the study region
h0
upper bound of integration in the criterion function
expo
exponent in the criterion function
n.int
number of intervals used to approximate the integral in the criterion function with a sum

Value

  • The function returns an object as returned by optim, including:
  • parThe best set of parameters s2 and rho found
  • valueThe value of the fit corresponding to `par'
  • convergence`0' indicates successful convergence

References

Diggle, P. J. (1983) Statistical analysis of spatial point patterns, London: Academic Press, pp. 55-57 and 78-81; Bailey, T. C. and Gatrell, A. C. (1995) Interactive spatial data analysis, Harlow: Longman, pp. 106-109.

See Also

optim, pcp.sim, Kenv.pcp, khat

Examples

Run this code
data(cardiff)
polymap(cardiff$poly)
pointmap(as.points(cardiff), add=TRUE)
title("Locations of homes of 168 juvenile offenders")
pcp.fit <- pcp(as.points(cardiff), cardiff$poly, h0=30, n.int=30)
pcp.fit

Run the code above in your browser using DataLab