Make predictions or extract coefficients from a fitted SPLS object.
# S3 method for spls
predict( object, newx, type = c("fit","coefficient"), ... )
# S3 method for spls
coef( object, ... )
A fitted SPLS object.
If type="fit"
, then newx
should be the predictor matrix of test dataset.
If newx is omitted, then prediction of training dataset is returned.
If type="coefficient"
, then newx
can be omitted.
If type="fit"
, fitted values are returned.
If type="coefficient"
,
coefficient estimates of SPLS fits are returned.
Any arguments for predict.spls
should work for coef.spls
.
Matrix of coefficient estimates if type="coefficient"
.
Matrix of predicted responses if type="fit"
.
Users can input either only selected variables or all variables for newx
.
Chun H and Keles S (2010), "Sparse partial least squares for simultaneous dimension reduction and variable selection", Journal of the Royal Statistical Society - Series B, Vol. 72, pp. 3--25.
plot.spls
and print.spls
.
# NOT RUN {
data(yeast)
# SPLS with eta=0.7 & 8 latent components
f <- spls( yeast$x, yeast$y, K=8, eta=0.7 )
# Coefficient estimates of the SPLS fit
coef.f <- coef(f)
coef.f[1:5,]
# Prediction on the training dataset
pred.f <- predict( f, type="fit" )
pred.f[1:5,]
# }
Run the code above in your browser using DataLab