Make predictions or extract coefficients from a fitted SPLSDA object.
# S3 method for splsda
predict( object, newx, type = c("fit","coefficient"),
fit.type = c("class","response"), ... )
# S3 method for splsda
coef( object, ... )
A fitted SPLSDA object.
If type="fit"
, then newx
should be the predictor matrix of test dataset.
If newx is omitted, then prediction of training dataset is returned.
If type="coefficient"
, then newx
can be omitted.
If type="fit"
, fitted values are returned.
If type="coefficient"
,
coefficient estimates of SPLSDA fits are returned.
If fit.type="class"
, fitted classes are returned.
If fit.type="response"
, fitted probabilities are returned.
Relevant only when type="fit"
.
Any arguments for predict.splsda
should work for coef.splsda
.
Matrix of coefficient estimates if type="coefficient"
.
Matrix of predicted responses if type="fit"
(responses will be predicted classes if fit.type="class"
or predicted probabilities if fit.type="response"
).
Users can input either only selected variables or all variables for newx
.
Chung D and Keles S (2010), "Sparse partial least squares classification for high dimensional data", Statistical Applications in Genetics and Molecular Biology, Vol. 9, Article 17.
# NOT RUN {
data(prostate)
# SPLSDA with eta=0.8 & 3 hidden components
f <- splsda( prostate$x, prostate$y, K=3, eta=0.8, scale.x=FALSE )
# Print out coefficients
coef.f <- coef(f)
coef.f[ coef.f!=0, ]
# Prediction on the training dataset
(pred.f <- predict( f, type="fit" ))
# }
Run the code above in your browser using DataLab