# \donttest{
library(spm)
data(petrel)
gravel <- petrel[, c(1, 2, 6:9, 5)]
longlat <- petrel[, c(1, 2)]
model <- log(gravel + 1) ~ lat + bathy + I(long^3) + I(lat^2) + I(lat^3)
y <- log(gravel[, 7] +1)
set.seed(1234)
glmkrigecv1 <- glmkrigecv(formula.glm = model, longlat = longlat, trainxy = gravel,
y = y, transformation = "none", formula.krige = res1 ~ 1, vgm.args = "Sph",
nmaxkrige = 12, validation = "CV", predacc = "ALL")
glmkrigecv1 # Since the default 'family' is used, actually a 'lm' model is used.
data(spongelonglat)
longlat <- spongelonglat[, 7:8]
model <- sponge ~ long + I(long^2)
y = spongelonglat[, 1]
set.seed(1234)
glmkrigecv1 <- glmkrigecv(formula.glm = model, longlat = longlat, trainxy =
spongelonglat, y = y, family = poisson, transformation = "arcsine",
formula.krige = res1 ~ 1, vgm.args = ("Sph"), nmaxkrige = 12,
validation = "CV", predacc = "ALL")
glmkrigecv1
# glmok for count data
data(spongelonglat)
longlat <- spongelonglat[, 7:8]
model <- sponge ~ . # use all predictive variables in the dataset
y = spongelonglat[, 1]
set.seed(1234)
n <- 20 # number of iterations,60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
glmkrigecv1 <- glmkrigecv(formula.glm = model, longlat = longlat, trainxy = spongelonglat,
y = y, family = poisson, formula.krige = res1 ~ 1, vgm.args = ("Sph"), nmaxkrige = 12,
validation = "CV", predacc = "VEcv")
VEcv [i] <- glmkrigecv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for GLM", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
# glmok for percentage data
longlat <- petrel[, c(1, 2)]
model <- gravel / 100 ~ lat + bathy + I(long^3) + I(lat^2) + I(lat^3)
set.seed(1234)
n <- 20 # number of iterations,60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
glmkrigecv1 <- glmkrigecv(formula.glm = model, longlat = longlat, trainxy = gravel,
y = gravel[, 7] / 100, family = binomial(link=logit), formula.krige = res1 ~ 1,
vgm.args = ("Sph"), nmaxkrige = 12, validation = "CV", predacc = "VEcv")
VEcv [i] <- glmkrigecv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for GLM", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
# }
Run the code above in your browser using DataLab