# \donttest{
library(spm)
data(petrel)
x <- as.matrix(petrel[, c(1, 2, 6:9)])
y <- log(petrel[, 5] + 1)
set.seed(1234)
glmnetcv1 <- glmnetcv(x, y, validation = "CV", predacc = "ALL")
glmnetcv1
data(sponge)
x <- as.matrix(cbind(sponge$easting, sponge$easting^2))
set.seed(1234)
glmnetcv1 <- glmnetcv(x, sponge[, 3], family = poisson, validation = "CV",
predacc = "ALL")
glmnetcv1
# For glmnet with gaussian
x <- as.matrix(petrel[, c(1, 2, 6:9)])
y <- log(petrel[, 5] + 1)
set.seed(1234)
n <- 20 # number of iterations,60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
glmnetcv1 <- glmnetcv(x, y, validation = "CV", predacc = "VEcv")
VEcv [i] <- glmnetcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for glmnet", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
# For glmnet with binomial
x <- as.matrix(cbind(petrel[, c(2, 6)], petrel$long^3, petrel$lat^2, petrel$lat^3))
set.seed(1234)
n <- 20 # number of iterations,60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
glmnetcv1 <- glmnetcv(x, petrel[, 5] / 100, family = binomial(link=logit),
validation = "CV", predacc = "VEcv")
VEcv [i] <- glmnetcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for glmnet", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
# }
Run the code above in your browser using DataLab