# \donttest{
library(spm)
library(nlme)
data(petrel)
gravel <- petrel[, c(1, 2, 6:9, 5)]
range1 <- 0.8
nugget1 <- 0.5
model <- log(gravel + 1) ~ long + lat + bathy + dist + I(long^2) + I(lat^2) +
I(lat^3) + I(bathy^2) + I(bathy^3) + I(dist^2) + I(dist^3) + I(relief^2) + I(relief^3)
glscv1 <- glscv(model = model, gravel, log(gravel[, 7] +1), validation = "CV",
corr.args = corSpher(c(range1, nugget1), form = ~ long + lat, nugget = TRUE),
predacc = "ALL")
glscv1
#For gls
set.seed(1234)
n <- 20 # number of iterations,60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
glscv1 <- glscv(model = model, gravel, log(gravel[, 7] +1), validation = "CV",
corr.args = corSpher(c(range1, nugget1), form = ~ long + lat,
nugget = TRUE), predacc = "VEcv")
VEcv [i] <- glscv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for GLS", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
# For lm, that is, gls with 'correlation = NULL'
n <- 20 # number of iterations,60 to 100 is recommended.
VEcv <- NULL
set.seed(1234)
for (i in 1:n) {
glscv1 <- glscv(model = model, gravel, log(gravel[, 7] +1),
validation = "CV", predacc = "VEcv")
VEcv [i] <- glscv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for GLS", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
# }
Run the code above in your browser using DataLab