# \donttest{
library(spm)
data(petrel)
gravel <- petrel[, c(1, 2, 6:9, 5)]
model <- log(gravel + 1) ~ lat + bathy + I(long^3) + I(lat^2) + I(lat^3)
set.seed(1234)
svmcv1 <- svmcv(formula = model, gravel, log(gravel[, 7] +1), validation = "CV",
predacc = "ALL")
svmcv1
data(sponge2)
model <- species.richness ~ .
set.seed(1234)
svmcv1 <- svmcv(formula = model, sponge2[, -4], sponge[, 3], gamma = 0.01, cost = 3.5,
scale = TRUE, validation = "CV", predacc = "VEcv")
svmcv1
# For svm
model <- species.richness ~ .
set.seed(1234)
n <- 20 # number of iterations,60 to 100 is recommended.
VEcv <- NULL
for (i in 1:n) {
svmcv1 <- svmcv(formula = model, sponge2[, -4], sponge[, 3], gamma = 0.01, cost = 3.5,
scale = TRUE, validation = "CV", predacc = "VEcv")
VEcv [i] <- svmcv1
}
plot(VEcv ~ c(1:n), xlab = "Iteration for svm", ylab = "VEcv (%)")
points(cumsum(VEcv) / c(1:n) ~ c(1:n), col = 2)
abline(h = mean(VEcv), col = 'blue', lwd = 2)
# }
Run the code above in your browser using DataLab