- formula.svm
a formula defining the response variable and predictive variables for 'svm'.
- longlat
a dataframe contains longitude and latitude of point samples.
- trainxy
a dataframe contains longitude (long), latitude (lat),
predictive variables and the response variable of point samples. That is,
the location information must be named as 'long' and 'lat'.
- y
a vector of the response variable in the formula.svm, that is, the left
part of the formula.svm.
- scale
A logical vector indicating the variables to be scaled (default: TRUE).
- type
the default setting is 'NULL'. See '?svm' for various options.
- kernel
the default setting is 'radial'. See '?svm' for other options.
- degree
a parameter needed for kernel of type polynomial (default: 3).
- gamma
a parameter needed for all 'kernels' except 'linear'
(default: 1/(data dimension)).
- coef0
a parameter needed for kernels of type 'polynomial' and 'sigmoid'(default: 0).
- cost
cost of constraints violation (default: 1).
- nu
a parameter needed for 'nu-classification', 'nu-regression', and 'one-classification' (default: 0.5).
- tolerance
tolerance of termination criterion (default: 0.001).
- epsilon
'epsilon' in the insensitive-loss function (default: 0.1).
- transformation
transform the residuals of 'svm' to normalise the data;
can be "sqrt" for square root, "arcsine" for arcsine, "log" or "none"
for non transformation. By default, "none" is used.
- delta
numeric; to avoid log(0) in the log transformation. The default is 1.
- formula.krige
formula defining the response vector and (possible) regressor.
an object (i.e., 'variogram.formula') for 'variogram' or a formula for
'krige'. see 'variogram' and 'krige' in 'gstat' for details.
- vgm.args
arguments for 'vgm', e.g. variogram model of response
variable and anisotropy parameters. see 'vgm' in 'gstat' for details.
By default, "Sph" is used.
- anis
anisotropy parameters: see notes 'vgm' in 'gstat' for details.
- alpha
direction in plane (x,y). see variogram in 'gstat' for details.
- block
block size. see 'krige' in 'gstat' for details.
- beta
for simple kriging. see 'krige' in 'gstat' for details.
- nmaxkrige
for a local predicting: the number of nearest observations that
should be used for a prediction or simulation, where nearest is defined in
terms of the space of the spatial locations. By default, 12 observations
are used.
- validation
validation methods, include 'LOO': leave-one-out, and 'CV':
cross-validation.
- cv.fold
integer; number of folds in the cross-validation. if > 1,
then apply n-fold cross validation; the default is 10, i.e., 10-fold cross
validation that is recommended.
- predacc
can be either "VEcv" for 'vecv' or "ALL" for all measures
in function pred.acc.
- ...
other arguments passed on to 'svm' and 'krige'.