require(spdep)
data(house)
dat0 <- data.frame(house@coords,house@data)
dat <- dat0[dat0$yrbuilt>=1980,]
###### purpose 1: improve SVC modeling accuracy ######
###### (i.e., addressing the over-smoothing problem) #
y <- log(dat[,"price"])
x <- dat[,c("age","rooms")]
xconst <- dat[,c("lotsize","s1994","s1995","s1996","s1997","s1998")]
coords <- dat[ ,c("long","lat")]
meig <- meigen_f( coords )
## Not run
# res0 <- resf_vc(y = y,x = x, xconst = xconst, meig = meig)
# res <- addlearn_local(res0) # It adjusts SVCs to model local patterns
# res
####### parallel version for very large samples (e.g., n >100,000)
# bes0 <- besf_vc(y = y,x = x, xconst = xconst, coords=coords)
# bes <- addlearn_local( bes0 )
####### purpose 2: improve predictive accuracy ########
#samp <- sample( dim( dat )[ 1 ], 2500)
#d <- dat[ samp, ] ## Data at observed sites
#y <- log(d[,"price"])
#x <- d[,c("age","rooms")]
#xconst <- d[,c("lotsize","s1994","s1995","s1996","s1997","s1998")]
#coords <- d[ ,c("long","lat")]
#d0 <- dat[-samp, ] ## Data at observed sites
#y0 <- log(d0[,"price"])
#x0 <- d0[,c("age","rooms")]
#xconst0 <- d0[,c("lotsize","s1994","s1995","s1996","s1997","s1998")]
#coords0 <- d0[ ,c("long","lat")]
#meig <- meigen_f( coords )
#meig0 <- meigen0( meig=meig, coords0=coords0 )
#
#res0 <- resf(y = y,x = cbind(x,xconst), meig = meig)
#res <- addlearn_local(res0, meig0=meig0, x0=cbind(x0,xconst0))
#pred <- res$pred0 ## Predictive values
#
## OR
#res0 <- resf_vc(y = y,x = x, xconst = xconst, meig = meig)
#res <- addlearn_local(res0, meig0=meig0, x0=x0, xconst0=xconst0)
#pred <- res$pred0 ## Predictive values
Run the code above in your browser using DataLab