data(apricotFFD)
data(BJDAT)
X1 <- apricotFFD
X2 <- BJDAT
Year1.val <- X1$Year
Time.val <- X1$Time
Year2.val <- X2$Year
DOY.val <- X2$DOY
Temp.val <- X2$MDT
DOY.ul.val <- 120
S.arr0 <- 47
#### Defines a re-parameterized Arrhenius' equation ###########################
Arrhenius.eqn <- function(P, x){
B <- P[1]
Ea <- P[2]
R <- 1.987 * 10^(-3)
x <- x + 273.15
10^12*exp(B-Ea/(R*x))
}
##############################################################################
#### Provides the initial values of the parameter of Arrhenius' equation #####
ini.val0 <- list( B = 20, Ea = 14 )
##############################################################################
# \donttest{
res5 <- ADP( S.arr = S.arr0, expr = Arrhenius.eqn, ini.val = ini.val0, Year1 = Year1.val,
Time = Time.val, Year2 = Year2.val, DOY = DOY.val, Temp = Temp.val,
DOY.ul = DOY.ul.val, fig.opt = TRUE, control = list(trace = FALSE,
reltol = 1e-12, maxit = 5000), verbose = TRUE )
res5
TDDR <- res5$TDDR
T <- TDDR$Temperature
r <- TDDR$Rate
Y <- res5$Year
DP <- res5$Dev.accum
dev.new()
par1 <- par(family="serif")
par2 <- par(mar=c(5, 5, 2, 2))
par3 <- par(mgp=c(3, 1, 0))
Ind <- sort(T, index.return=TRUE)$ix
T1 <- T[Ind]
r1 <- r[Ind]
plot( T1, r1, cex.lab = 1.5, cex.axis = 1.5, pch = 1, cex = 1.5, col = 2, type = "l",
xlab = expression(paste("Mean daily temperature (", degree, "C)", sep = "")),
ylab = expression(paste("Calculated developmental rate (", {day}^{"-1"}, ")", sep = "")) )
par(par1)
par(par2)
par(par3)
dev.new()
par1 <- par(family="serif")
par2 <- par(mar=c(5, 5, 2, 2))
par3 <- par(mgp=c(3, 1, 0))
plot( Y, DP * 100, xlab = "Year",
ylab = "Accumulated developmental progress (%)",
ylim = c(50, 150), cex.lab=1.5, cex.axis = 1.5, cex = 1.5 )
abline( h = 1 * 100, lwd = 1, col = 4, lty = 2 )
par(par1)
par(par2)
par(par3)
# graphics.off()
# }
Run the code above in your browser using DataLab