data(apricotFFD)
data(BJDAT)
X1 <- apricotFFD
X2 <- BJDAT
Year1.val <- X1$Year
Time.val <- X1$Time
Year2.val <- X2$Year
DOY.val <- X2$DOY
Temp.val <- X2$MDT
DOY.ul.val <- 120
S.val <- 47
# Defines a re-parameterized Arrhenius' equation
Arrhenius.eqn <- function(P, x){
B <- P[1]
Ea <- P[2]
R <- 1.987 * 10^(-3)
x <- x + 273.15
10^12*exp(B-Ea/(R*x))
}
P0 <- c(-4.3787, 15.0431)
T2 <- seq(-10, 20, len = 2000)
r2 <- Arrhenius.eqn(P = P0, x = T2)
dev.new()
par1 <- par(family="serif")
par2 <- par(mar=c(5, 5, 2, 2))
par3 <- par(mgp=c(3, 1, 0))
plot( T2, r2, cex.lab = 1.5, cex.axis = 1.5, pch = 1, cex = 1.5, col = 2, type = "l",
xlab = expression(paste("Temperature (", degree, "C)", sep = "")),
ylab = expression(paste("Developmental rate (", {day}^{"-1"}, ")", sep="")) )
par(par1)
par(par2)
par(par3)
res6 <- predADP( S = S.val, expr = Arrhenius.eqn, theta = P0, Year2 = Year2.val,
DOY = DOY.val, Temp = Temp.val, DOY.ul = DOY.ul.val )
res6
ind5 <- res6$Year %in% intersect(res6$Year, Year1.val)
ind6 <- Year1.val %in% intersect(res6$Year, Year1.val)
RMSE3 <- sqrt( sum((Time.val[ind6]-res6$Time.pred[ind5])^2) / length(Time.val[ind6]) )
RMSE3
Run the code above in your browser using DataLab