50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

sprex (version 1.4.2)

discovery.curve: Discovery Curve

Description

Calculate the components of a species discovery curve.

Usage

discovery.curve(
  f,
  f0.func,
  max.x = sum(f * 1:length(f)),
  n.pts = 100,
  ci = 0.95,
  plot = TRUE,
  ...
)

Value

a list with:

f.stats

a named vector from f0.func.

curve

a data.frame defining the rarefaction and extrapolation curves (specified in the section column), and columns providing the lower (lci) and upper (uci).

Arguments

f

a vector of species frequencies where f[i] is the number of species represented by only i samples.

f0.func

function to use to calculate f0.

max.x

the maximum number of samples to calculate the curve for. Defaults to the sample size of f.

n.pts

number of points between 0 and max.x to estimate.

ci

size of the confidence interval (0.5:1).

plot

plot the curve?

...

other arguments to f0.func.

Author

Eric Archer eric.archer@noaa.gov

References

Colwell, R.K., A. Chao, N.J. Gotelli, S.-Y. Lin, C.X. Mao, R.L. Chazdon, and J.T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5(1):3-21.

Examples

Run this code
data(osa.old.growth)
f <- expand.freqs(osa.old.growth)
d <- discovery.curve(f, f0.func = Chao1, max.x = 1200)

print(str(d))

Run the code above in your browser using DataLab