# spt

##### Sierpinski Pedal Triangle

To initial, plot and show a Sierpinski pedal triangles.

- Keywords
- stats

##### Usage

`spt(A,B)`

##### Arguments

- A,B
The degrees of two of the three angles of a triangle.

##### Details

When the original triangle is an acute triangle, the area of the
smallest SPT/PT to be drawn is determined by (tol * S), where S is
the total area for plotting. No restriction is applied to
`iter`

.

If the original triangle is an obtuse triangle, the largest value of
`iter`

is 12.

tol: A stopping creiteria to draw the sub-SPT. Default value 0.0001.

##### Value

The dimension of the SPT will be returned if the original triangle is an acute triangle.

The viewport of showing the SPT/ST "abc" can be changed by changing the value of abc$viewport.

##### References

Zhang, XM., Hitt, R. Wang, B. and Ding, J. (2008). Sierpinski Pedal Triangle. Fractals. 16(2): 141-150.

##### Examples

```
# NOT RUN {
(abc = spt(50,60))
plot(abc, iter=7)
(abc = spt(50,10))
plot(abc, iter=3)
abc$viewport = c(0,-70,84,100)
plot(abc, iter=6)
# }
```

*Documentation reproduced from package spt, version 2.5.1, License: Unlimited*