getClusterCt: Retrieve the Central Coordinates for Each Cluser after Clustering Done.
Description
This function is the second step for Adaptive Kruskal algorithm for generating aggregate centers for Thiessen polygons with the aim to obtain the central point for each cluster.
Usage
getClusterCt(samples, clsInf)
Arguments
samples
Data frame for samples with the columns of coordinates (column name: x and y)
clsInf
Cluster results obtained from the fucntion,exeCluster
Value
vector format: coordinates (x and y) for each cluster
Details
Retrieve the central point for each cluster.
References
Thomas, C.; Leiserson, C.; Rivest, R.; Stein, C., Introduction To Algorithms (Third ed.). MIT Press: 2009
# NOT RUN {samplePnt=data.frame(x=runif(100,1,100),y=runif(100,1,100))
clusterId=exeCluster(samplePnt,10)
clscenters=getClusterCt(samplePnt,clusterId)
# }